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TO JOSEPH L. WALSH ON HIS 75TH BIRTHDAY, IN ADMIRATION

In some recent papers the authors [7-9] have treated sequences
{Vp;n=0,1,2,.} of (commutative) operators FV,e&(X) (= Banach
algebra of endomorphisms of the Banach space X) satisfying Jackson and
Bernstein-type inequalities. Their results include ‘““direct” and the corre-
sponding “inverse” approximation theorems, theorems of Zamansky-type
for such operators, as well as theorems of “reduction” type. Within a certain
framework it was shown that the assertions of these four types of theorems
are equivalent to each other.

The purpose of this paper is fivefold. First, the sequences depending
upon the discrete parameter n, n-—> oo, are replaced by the family
U = {U(t) : 0 < t < 1} of operators in §(X) depending upon the continuous
parameter ¢, t — 0-. While this is a minor modification (and includes the
discrete case) the major one consists in broadening the notion of order of
approximation by using the general concept of a function norm ®. To be
specific, with the notation D, [p()] = supsee11 t%¢(f), ¢ being any
nonnegative measurable function on (0, 1], the (classical) approximation
assertion

1U@Of—=fll=0@) (€(0,1],1—~0+)

may be restated as D, ,.[|| U(¥) f — flix] << co. More generally, the approxi-
mation order O(®) is to be replaced by O(£2(2)), 2(¢) being a monotone
increasing function of ¢ on (0, 1] (de la Vallée Poussin {20, Chap. 4] seems
to be the first to use such £2’s in approximation theory; see also the account
in Timan [197).

* Work of this author was partly supported by a research grant from the Gorres-
Gesellschaft, Cologne.
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JACKSON AND BERNSTEIN-TYPE INEQUALITIES 309

More generally, one may define’

' sup 071 ¢l1), g = o0

te(0,1

Dy, [p(2)] = .1 1

e e@rrtdy L 1< g <
the case g == o0 giving the approximation O[£(r)]. This would give approxi-
mation in the setting of the theory of K-intermediate spaces (see the treatment
in the case 2(¢) = ?in [4]). In their most general form, function seminorms @
will be introduced as functionals satisfying a suitable system of axioms, and
fitted into the framework of approximation as above. An approach via
functional norms was already followed in interpolation-space theory by
Gagliardo [11] and Peetre [17, 18] (see the discussion in Butzer-Berens
[4, pp. 213-215]). In this paper, a somewhat more general system of axioms
will be set up. This will enable us to present the basic structure and funda-
mental theorems of linear approximation processes in a systematic and
axiomatic fashion.

Third, Jackson and Bernstein-type inequalities will be intensively investi-
gated. In the light of the foregoing, it will be postulated that the family %
satisfies such inequalities of order ¥(r) on X with respect to a second Banach
space Y C X, ““C” in the sense of continuous embedding. In previous papers by
varicus authors [2, 7,9, 17] such inequalities were considered only in the
particular case p(¢) = *, o > 0. Given a Jacksoen and Bernstein-type
inequality of order y(r) on X with respect to ¥, necessary and sufficient
conditions will be established in order that there exist such inequalities of
“intermediate” order z(¢) on X with respect to certain spaces Z, which are
“intermediate” between X and Y. (In the particular instance that (&) = 1=,
z{t) = t*, this means that 0 < « << f8). In most of the applications this boils
down to the fact that only Jackson and Bernstein-type inequalities of
“highest” possible (or saturation) order need be verified.

Fourth, it will be shown that Jackson and Bernstein-type inequalities for
the pairs X, Y and X, Z, with respective orders y{z) and z{¢}, imply such
inequalities for the pair Z, ¥ with “reduced” order y(:)(z(+)) %, provided that
¥y(t) is “better” than z(¢) (which implies that Z C Y). This will enable us 1o
establish the main result (Theorem 6) of this paper, an equivalence theorem
on the order of approximation of U(t) to ihe identity [ in the setting of the
function seminorm @. Whereas this theorem in its preliminary version
{Theorem 1) is only concerned with the equivalence of “direct,” “inversa.”
and Zamansky-type assertions, the theorem in its general form includes a

1 Note that below 27Yr) (or (2(r))™*) always stands for 1/02(}, and not for the inverse
function.
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310 BUTZER AND SCHERER

fourth assertion equivalent to these, namely, one of “reduction” type. By
this is meant that approximation is taken in a “stronger” norm, but with a
certain loss of the order of approximation. (In the applications, this signifies
simultaneous approximation of a function and its derivatives). All in all,
the axiomatization presented leads to a clarification and simplification on the
one hand and allows a more general theory on the other. The presentation is
self-contained, the proofs being carried out in detail.

Fifth, it will be seen that the theory is built up in such a way that it contains
the corresponding investigations (see [4]) for holomorphic semigroups of
operators {7(z) : 0 < t << oo} of class (Cy) in £(X), as well as for the family
of resolvent operators {AR(A; A) : 0 << A << o0}, A being the infinitesimal
generator of the semigroup. Moreover, it also includes a large variety of
applications to various summation processess of Fourier series, the Riesz
means of the Fourier-inversion integral receiving special attention. At the
same time this paper provides complete proofs of results announced in
Butzer—Scherer [10].

1. PRELIMINARIES
We begin with some basic definitions.

DeriNiTION 1. Given a Banach space X, we denote by .#(X) the class of
all X-valued functions on (0, 1] which are strongly measurable. In particular,
if X is the set R;* of all nonnegative reals, we write #(R,") = 4.

DEFINITION 2. A function® seminorm @ is a functional @ defined on .4+
which is nontrivial (i.e., there exists a nonnull ¢ € .4+ such that @(J) < ),
and satisfies for each @ € .4+ :

Plog] = aP(p) (x> 0), (L.1)
P(f) < Z eu(t) ae. = D) < Z‘ D], (1.2)
Dlp(t)] < 0 = @(t) < © ae. (peAt). (1.3)

In the following, we shall study properties of function seminorms which are
important for the theory in the subsequent sections. They are more general
than those in [12] and are partly related to well-known inequalities of Hardy.

DerNITION 3. A function seminorm D is regular if, for each ¢ € A,
Dlp(1/2)] < CoDlp(1)] (1.4)
where C, is a positive constant,

1 Compare Gagliardo [11], Peetre {17} and Goulaouic [12] for the notion of a function-
norm.
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DerINITION 4. D is upper-bounded by z(t) (z(t) € .4 +), if for some constant
A(D,2) > 0,

Dlz(1) ¢(D] < AP, 2) Pz(1) ()] (@ E.47), (1.

e
(%2}
St

where
At
@) = J () u™ du.
0
D is lower-bounded by y(t) e 4+, if

Ply(0) o] < B(P, y) PLy(@) (1)) (pe M),
for a constant B(®, y) > 0, where

,n.
[y
<y

Ve?

1
o(t) = f o(u) u~t du.
£
LemMa 1.2 Ler @ be a function seminorm.

(a) If D is upper-bounded by z,(t) e A+, it is also upper-bounded by
every zy(t) € M+ such that z,(t)/z,(t) is nonincreasing; in particular it is upper-
bounded by any constant if z,(t) is nondecreasing.

(b) If D is lower-bounded by y,(t)€.#~, it is also lower-bounded by
every yy(t) € M+ such that y,(t)/y,(t) is nondecreasing.

(¢) If @ is upper-bounded by a consiant and lower-bounded by a non-
decreasing bounded y(t) € A+, then P y(t)] < =o.

Proof. Part (a) follows by (1.2) and (1.6) since
OLt) )] = @ [0} | o) u di]
<0 [20) [ {atilzi0} o) - ]
< AP, 2} Blzo(1) @(1)]-
Taking z(t) = const., we see that @ is upper-bounded by any constant

provided z(¢) is nondecreasing.
In a similar manner, assertion (b) follows in view of

1 . . .
PLy0) 9] < DI || (/s plw) 1 ]

< B(D, yy) Pl ysft) (t)].

2 Here and in the following, the monotonicity couid be weakened to quasimonctonicity
in the sense of Bernstein [3].
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Finally, let 4 be a nonnull function in #+ with @[f] < co. Then

D[J(1)] < D[] < oo since D is upper-bounded by a constant. By (1.3) it
follows that

W
’ ’ () ul du << o
Y0

for some #, € (0, 1]. Hence, for the function *(u) = (u) for0 <u < t,,=0
for 7, < u < 1, one has

0<f1¢*(u)du<oo

and P[y*] < oo, by (1.2). Now, applying (1.5) for z(r) = 1 and (1.6), we
obtain, by (1.2),

Dly()] < [J: () dt]ﬁl 3);(1)(15 [f: Dlu) uu™t du] + b [y(t) fi ) un du]%
<|[J B0y dt] " (1) A@, 1) PL()] + B@, ) BLy(t) 1) 1

1 -1 o
<[] v a] " 1a@, 1) + B@, )1 y1) DY) < o0.

Lemma 1 already justifies in some sense the terminology of lower- and
upper-boundedness of @. This becomes still more apparent when one
considers the most important examples of @, namely,

{ rL 1/q
Podpl = |[ @00l 1 <q<w)
Do.lp] = sup 27@) p(t) (g = ),
te(o,1]
where ((¢) is a positive nondecreasing function of .#+. In the case £(t) = 1?,

0 > 0, we shall write Py , = Dy , . It is easily verified that D, , is a function
seminorm, since it satisfies conditions (1.1)-(1.3) and is nontrivial in view of

¢ pl 1/q
Dy [Q(0)1] = D, [t] = 3 f fo-1 dts < oo.
]
It is, moreover, regular? since

Godlpt2] < || 127w2) D) - dif " < B lpl0)]

% We remark that in order to show the regularity of @ it is sufficient to assume
(t/2) < const. () instead of assuming £(#) to be nondecreasing.
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We shall now investigate how lower- and upper-boundedness may be
expressed in terms of £2(¢).

Lemma 2. Let @), y(t), and z(t) be positive functions in 44+ and let £2(:)
be nondecreasing.

(a) The function seminorm Dy, ., is upper-bounded by z(t) if and only if
J| 27w 200wt ds = O[0) Q00 (1.7

and is lower-bounded by y(t) if and only if
J: 374u) Q) u=t du = O] y~(1) Q). (1.8)
(b) The function seminorm Dy, is upper-bounded by z(r) if and orly if
[ 20 2 4w w7t du — OF() 21, (19)

and is lower-bounded by y(t) if and only if
JZ () Q) ut du = O y(1) QD)) (1.10)

{c) The function seminorm @, ,, 1 < q << o0, is upper-bounded by z(t)
if both (1.7) and (1.9) are valid, and is lower-bounded by y(t) if both {(1.8) and
{1.10) are valid.

Proof. Setting g(u) = o) z(u) 2 u) »1,

Vig(u); t] = t7z(t) 272(1) r (1) z7 () () du
o
and
M)y = @(u) p(u) QYu) wt, Wlh(u); t] = r1p(t) 274) "1 A yu) £ dus,

we can rewrite conditions (1.5) and (1.6), in case 1 < ¢ << o0, in the form

Il Vig); thilz o < A2, q.2)| g liz 0,11

lt Wih(u); 4] HL,,[O.I] < B2, q, ) h 'z, 0.21 5

640/5(3-7*
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respectively, where || -HLq[M] denotes the usual norm of the space of all
functions in .#+ whose gth power is Lebesgue-integrable. Since one can
assume that the right sides of these inequalities are finite, conditions (1.5)
and (1.6) state that ¥ and W, regarded as linear operators on L,[0, 1] into
itself, are bounded. In case ¢ = 1, this is equivalent to the assertions

|Vl = sup =) Q@) | 20 Q30 -t de < o0,

ue(0,1]

| W lizrg = sup y) Q) [ yO QO dr < oo,
which are in turn equivalent to (1.9) and (1.10), respectively. A similar
argument, in case ¢ = oo, proves part (a). Then the general case | << g <<
in part (c) follows from the cases ¢ = 1 and g = oo by the well-known
interpolation theorem of Riesz-Thorin applied to the operators " and W.

We remark that for z(¢#) = 1 and y(¥) = r*, conditions (1.7) and (1.8) are
precisely those on generalized moduli of continuity used by Bari—Steckin
[1] in order to establish some approximation theoretic equivalence theorems.
Furthermore, part (c) contains as a particular case well-known inequalities
of Hardy (see Hardy-Littlewood-P6lya [14, pp.245-246)),in which z(u) 2-(u)
and y(u) 2% (u) are of the form > and ¢%, respectively, with o, § > 0. In this
case one easily verifies (1.7)-(1.10). Specializing further, with Q(f) = 1°,
z(z) = t* and y({) = ¢!, 0 > 0 and k, / being nonnegative integers, condi-
tions (1.7), (1.9) are equivalent to 6 > k, and (1.8), (1.10) to 8 < L

Function seminorms will be now employed to construct Banach subspaces
of a given Banach space X.

DEFINITION 5. Let X be a Banach space. We denote by .4"+(X) the class of
all functionals on the product space (0, 1] X X into R;* whose compositions
with the projections on X and (0, 1] are continuous seminorms on X and
belong to .#+, respectively.

DerINITION 6. We denote by X(P; M) the subspace of all elements fe X
such that @[M(z,f)] < oo, where @ is a function seminorm and M(t,f)
a functional belonging to A4"+(X).

DEerFiNITION 7. A subspace Y of the Banach space X is said to be a normal
Banach subspace of X if there is a seminorm | - {y defined on Y such that ¥
is a Banach space with respect to the norm || - |ly = || " flx + | - |y -

Lemma 3. @[M(t, /)] is a seminorm, and the space X(D, M) is a normal
Banach subspace of X with respect to the norm || fllo.ar = || fllx + PIM(, H].
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Proof. Tirst, it is obvious that || fil.as = O if and only if /= 0. Second,
one has by (1.1) and (1.2),

DIM(1, o fr + 0 f)] < Pl oy | MU f1) — | o | M2, f3)]

<
<oy | PIMQ S - | o | PIM(, o]

It remains to show that X(®; M) is a Banach space with respect to the
indicated norm. This is equivalent to the fact that for every sequencs
(D> o € X(P; M), with 5 {1 £y llo s < 00, we have ¥, f, € X(@; M). But
for such a sequence also 35 || f, llx is convergent, and hence ¥, f, = fe X
since X is complete. Furthermore, the property (1.2) of @ together with the
continuity of the seminorm M(¢, f) yield

«© -

. ] [JW (Z, Z fn')j

=1

Hf“fp,]\/[ =

LA

< Y {lfollx + PIM@, 1)1 < 0,
n=1

so that f'e X(®; M).

A special instance of a functional belonging to 4"+(X) is the K~functional
of Peetre [16] (see [4, p. 166]). If Y is any normal Banach subspace of X,
it is given (in a modified form) by

KX, V) =inf(lf—glx+7lgly) (JeXi0 <1< o)
Lemma 4. The K-functional K(¢, 1. X, Y) has the following properties:
Kt f; X, V) < max(l, ;; ) K(t,, £ X, V) {13, 1,€(0, o)),
Ko, X, Y)<!Iflx (feX, (0, «0)),
K, ; X, Y)<rt|fly (feX, 1e(0, o).

We omit the proof of these relations which are almost obviocus. They show
that the K-functional is monotone increasing as a function of ¢, and for a
fixed ¢ is a continuous seminorm on X and thus of class A4™+(X). Therefore,
in view of Lemma 3, the spaces

X(@W; K) = (X, Y; ) = {fe X : DIK(y(1). /; X, Y}] < o0},

where @9 [e(t)] = Ple(x(1))] and y(t) is monotone increasing with
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0 < y(#) < 1,* are normal Banach subspaces of X. If @ is regular and
lower-bounded by y(1), the inequality

PIK(y(®)./; X, NI < Py fly  (feY),

is valid. We can abbreviate this in the form
Y<X Y, o9 CUX, (1.11)

where X; C X, , for Banach spaces X;, X,, means that L lx, < M]If[]X1
for every fe X;, M > 0 being a constant, and ¥; < Y, , for normal Banach
subspaces Y;, Y, of X, means that |f v, SM'|f ly, for every feY,,
M’ > 0 being a constant. In view of (1.11), the spaces (X, ¥; O) are called
K-intermediate spaces.

A representative example of such spaces is obtained when Y is equal to
D(A"), i.e., to the domain of the rth power of the infinitesimal generator A
of a one-parameter semigroup 7 = {I(f) : 0 < t <C co} of operators of class
(Cy), of a family of operators of £(X), the Banach algebra of endomorphisms
of X, which satisfy for each fe X,

-T(O) =1, Tt + 12) = T(tl) T(tz) (fl > by > O)a

lim || T().f — flx = 0. (1.12)

In this case we set |fly = || Aflx and [[flly = fllx + | 47fllx for
fe D(47), so that D(A?) is a normal Banach subspace of X. Now there exists
a fundamental relation between K(t7, f; X, D(47)) and the rth modulus of
continuity of the semigroup defined by

wlt,f; T) = sup. I [Th) — 11 lx .

LemMA 5. For every fe X and t € (0, 1],

w(t,f; 7) < 2(Mg + 1)y K", f; X, D(47))
S @ryMy + 1) wlt, /;7), (1.13)

where M 5 = sup,.q 11| T(#)l| < oo.

Proof. The left side of the inequality (1.13) was established in Butzer—
Berens [4]. Since an explicit proof of the right side is to be found in [4] only

¢ Concerning more general conditions which assure that ¢(y(r)) belongs to .#* for
every ¢ € .4+, see Halmos [13, p. 81].
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for r = 1,2 and in a weaker form, we shall prove it here. First, we note the
relation

(1O — 11 = ar [ - | (5 w) re,

i=1

which is easily proved by induction. Therefore

ot/ abiT , T
g1 = (rlo) ‘0 ity JO (1Y, us) f by
) zH

is an element of D(4"), for [ = 1, 2,..., satisfying
Agr, = (r/UD)TTUjr) — 17 f.
Next, we set u = ¥';_; u; and choose
g = —(=Dr Y (=0 () g
=1 Y ¥
in the representation f = (f — g) -+ g. Then
K", f; X, D(A7) < Ilf— gllx +17] A llx

—WIU,

Wt/

<owyh’wy~ﬂﬂunm—nwuwr

AT |x

+y () @inr 1 1Ty — 11

I=1

<ot 7y + 3 (1) 6y w5 7)

I=

< @) wlt, f; ),

ot

which was to be proved.

As a consequence of (1.13) we obtain the following characterization of
K-intermediate spaces of X and D(A47), namely

(X, D(A"); D) = {fe X : Dlw,(t. f; T)] < oo}, (1.14)

where @M {gp()] = DPlep(t")]. In the particular instance when the semigroup
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{T(#) : 0 < t < w}isequi-bounded, i.e., || T()|| < My forallf e (0, ), and
& = @, ,, this means that (§ > 0),

) ' + ta ]
X, DAY D) = e X (| [twit, i i dr) - < e,
0
since, in this case,

[ 1%, £ D e < (M + 1y Sl [ 10t de < oo,
1 1

The latter spaces are denoted in {4] by X, .., . They are nontrivial subspaces
of X containing D(A") for0 <0 <r 1l <g< wand0 <8 <r,g= o,
since here @y ,[1"] < oo (see (1.11)). Furthermore, the following reduction
theorem of Lions—Peetre [15] is valid for 0 <k <8 <r, | <g< ®
(compare also [4, p. 198]):

Xo.r0 = 1€ D(AY) : A*f € Xo 1.1} (1.15)

[ being any natural number, [ > 6 — k.

We conclude this section by mentioning that if J is the semigroup of
translations on the Lebesgue space L,(— oo, o0), 1 << p <C oo, the spaces
[L(— o, 00)]s,,q are known as generalized Lipschitz spaces,

[T — 170 = A7) = ¥, () (-7 478 (e Ly(—co, )

j=0

being the rth difference of f'e L (— o0, ) and w, (¢, f; Z), the familiar rth
modulus of continuity of f.

2. JACKSON AND BERNSTEIN-TYPE INEQUALITIES OF FIXED ORDER

In this section we consider approximation processes on a Banach space X
which are more general than those given by a (holomorphic) semigroup of
operators. They are defined by a family % = {U(z) : t € [0, 1]} of operators of
&(X) satisfying for every fe X:

Unfe#X), [UDSflx<Mgllflx (€[0,1]), 2.1)
UO) =1, U@ U(ty) =Ul) Uty (1, 1,€[0,1D), (2.2)
im U@ f —flx = 0. (2.3)
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The essential properties are the commutativity in (2.2) and the convergence
property (2.3) which allows one to speak of a linear approximation process
on X. The uniform boundedness property and the strong measurability in
(2.1) are assumed for convenience in the subsequent evaluations. A
comparison with (1.12) shows that the strong semigroup property is replaced
by the weaker property of commutativity. In this way we cover a wide class of
linear approximation processes as the discussion in Section 4 will show,

In the foliowing, we shall be concerned with the approximation behaviour
of U(#) in (2.3) in more detail. For this purpose, we shall study the Banach
spaces

X(D; %) = {fe X | fllga = 1S lx + PUU@DS — flx] < o0}

Here we use || U(t)f — fllx as a functional of class 4 (X) (which follows
from (2.1)) to construct normal Banach subspaces of X generated by % in the
same way as the K-functional was used above to construct the K-intermediate
spaces. In the particular case @ = @, ,, we write X(;: %) = X, .0 -
Thus, e.g.,

Xoww = /€ X[ UWS — flix = O[L(D], 1 - 0+

represents the space of all elements f€ X which are approximated by % with
order £2(z).

We now assume more specific properties concerning the behavior of U{#)/
for a normal Banach subspace Y of X, in the form of Jackson and Bernstein-
type inequalities.

DermNnitioN 8. Let X and Y be Banach spaces as in Section [, Y C X,
and let y(+) be a monotone increasing function in #* satisfying
0 <3 <y(l)=1and

w1y <my@/2) (1O, 1). 2.4

We say that % satisfies a Jackson-type inequality of order y(t) on X with
respect to Y provided

1UOf—Fflx < Cry@fly  (fe) (2.5

for some constant Cy > 0, and a Bernstein-type inequality of order y(t) on X
with respect to Y provided

unfe#Y), 1UDSly <Dy @Oiflx (feX) (2.6

for some constant Dy > 0.
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A discussion concerning existence and applicability of Jackson and
Bernstein-type inequalities for concrete examples is given in [10] and also
in the following Sections 3 and 4. These inequalities enable us to prove the
following approximation-theoretic assertions concerning %.

THEOREM 1. Let % be a linear approximation process on X defined by
2.1)-(2.3), ler U(t)f e M(Y) for every fe X, and let D be a regular function
seminorm in the sense of Definition 3.

(a) If % satisfies the Jackson-type inequality (2.5) of order y(t) on X with
respect to Y, and D@ is upper-bounded by a constant, i.e.,

D[F(N)] < const. Plp(D)] (¢ M),

then @[y(£) | U f |y] < oo implies | U f — fllx] < 0.

(b) If % satisfies the Bernstein-type inequality (2.6) of order y(t) on X
with respect to Y, and D is upper-bounded by a constant and lower-bounded
by y(1), i.e.,

DLy(t) ()] < const. P[y(t) (t)]  (pe M7,

then @[|| U@ f — fllx] < oo implies P[y(1) | U()f ly] < co.

(c) Under the assumptions of part (a) as well as of part (b), the assertions
DIy US|yl < oo and O U — fllx} < o are equivalent, and
Sfurthermore

X(D; %) = (X, Y; d") 2.7
with equivalent norms.

Proof. We first establish part (c). By a standard device, using (2.1) and
(2.5), we have, for arbitrary fe X, ge ¥,

U@ — flx < U@ — II(f — &lix + I[U@ — g lix
< Myllf—glx+Cry@®igly,
and hence

I U@ — fllx < max(My , Cy) K(y(0),f; X, Y).

On the other hand, choosing, in view of U(f)f< Y, the particular
representation f = [f — U(¥)f]-+ U(¢)f, we obtain, by definition,

K(y@).£, X, Y) < UOS— flx + ¥ US|y -
Now, if we assume that D[] U()f — flix] << oo and D[ y(#) | U(t)f |y] < o
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are equivalent, it follows immediately by properties (1.1) and (i.2)
of @ and the above estimates that these assertions are also equivalent to
QIK(y(1),f; X, Y)] < 0. This proves part (c).

It remains to prove the equivalence expressed by parts (a) and (b). First,
we use the Jackson-type inequality (2.5) which yields, for every pair
u, v € (0, 1], by the commutativity (2.2),

| U@)f — U flx < T — U] Uw)flix + U@ — {1 U@ flix
< Crly@) | U f iy + (o) | U) S ¥l (2.8
The counterpart follows by the Bernstein-type inequality {2.6) and (2.2},
namely
LU — U fly < TU@U — Uf iy + | UlUG®) — {1/ 1y
< Dyly "N U@) f — fllx + y @) | Ue)f — flixl (2.5)
The rest of the proof now consists of utilizing these inequalities in a suitable

technical manner, where conditions (1.4)(1.7) and (2.4) upon @ and p{z) are
needed. To this end, we introduce the Bochner integral

t
S f = @[t Jm Uw)fade  (feX),

for t e (0, 1], which is, by assumption, an element of ¥ and tends to f in
X-norm if ¢ — 0. Then the inequalities

2N S@2) f— 827+ fllx
k=0

© 12k
=y !’ 2 [ @) f— Uwj2) flde]
pury) © gkl X
» ~27F
< Y 2 | U@) f — Ulef2) fllx de
F=0 v 2Rt
ot
<2 J WU@)f— U@/2) flix vt do, (2.10)
0

and
At

WSl < [ 1U@ S lyetdo
= [ U@ sl do+ [ 1 UGR)S 1y — | UG 1] ot de

1 A1
< (1 LU@) flyo™tde + Jl LUy — U flyvtde (2115

are valid.
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Then, applying (2.8) in (2.10), we obtain, by the properties of y(¢) for f e X,
| U@ f—flx
<NU@S— SO lix + X 11 SE25) f— S27+) fllx
k=0

<2[ VO = VO v do +2 | | UGN — VDS I o7 o
<20 [ DO UGS by + 50 | UO 1 o7 do
+2Cy [ [50) | UGS 1y + eI2)| UO)f1s] o™ do
<20 (my [ 50 | UGS 1yotdo -+ 30| U@ 1)
+2Cy(my + 1) [ 30) | UGSy o do

<20y [@m, + 1) [ 501 U@S vot do -+ 30| UO S 1]

Part (a) now follows by the properties (1.1), (1.2) and (1.5) of ©.
To prove part (b), we apply (2.9) in (2.11) and obtain, by the properties of
y(t) for fe X,

LU S ly <TUBDF—=SOS |y +1SOf |y
<2 lezl v f— v flyvdo + J‘;o [U@)flyvtdy

+ [ 106D — U0 1yt
<2y [ [P OIVOS Sl -+ y @I UOS —flsd v do

+0y [ 1Ak ) ot do + Dy [ )| UGS —flx
_ + 37| U f — flxl o do
< 2Dy [ f ;2 YOI U@ f —fllxvrdo + m,y O UGS — fllx
+ Dy lflxy(112)
Dyt m) [y [ UE)S — i de

Then the properties (1.1), (1.2) and (1.4) of @ as well as the upper-boundedness
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by a constant, the lower boundedness (1.6) by y(¢) and the regularity of &
yield the implication of part (b), since by the latter condition, D[ y(¢)] < ¢
(see Lemma 1(c)).

We remark that part (b) contains an assertion of Zamansky's type {who
first proved assertions of this kind for sequences of trigonometric
polynomials) and that part (c) establishes what are called in approximation
theory, a “direct” and a “‘converse” theorem, since it allows to conclude
convergence properties of the linear approximation process # given by
P UG f ~ fllx] < oo from the structural properties of the spaces X and ¥
given through @[K(y(1),f; X, Y)] < o0, and conversely. In the next section
we shall enlarge these results by assertions of reduction type which give
convergence in stronger norms than that of X.

3. JACKSON AND BERNSTEIN-TYPE INEQUALITIES OF DIFFERENT ORDERS

The first problem of this section may be described as follows: Given a
normal Banach subspace Z of X, we ask for necessary and sufficient conditions
which assure that % satisfies Jackson and Bernstein-iype inequalities on X
with respect to Z.

TueoreM 2. The approximation process % satisfies a Jackson-type
inequality of order z(t) € 4+ on X with respect to a normal Banach subspace 7
of X, ie.,

NV —flx < Cz 20) | f1z  (feZ;1€(0, 1)), (3.1
for some constant C; > 0, if and only if

Z<X, - {

[
[o5]
St

Proof. By definition, (3.2) states that
Q.UM =[xl = sup. U S~y < Czlfiz

for all fe Z. But this i1s equivalent to (3.1).

The characterization of Bernstein-type inequalities is more complicated.
We assume from here on—even if not explicitly mentioned —that z{(¢} is
monotone increasing with 1 = z{1) > z(¢) > 0 for & (0, 1], and that z(z)
satisfies condition (2.4) with a corresponding constant s, > 0.

TeEOREM 3. If the approximation process % satisfies a Bernstein-rype
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inequality of order z(t) on X with respect to a normal Banach subspace Z of X,
ie.,

U@)f e #(Z), lUDSflz <Dz 2O IflIx (feX;te(©,1])
(3.3)
Jfor some constant Dy > 0, then

X 1.2CZ 3.4

Proof. Since U(t)fe #(Z), it follows that S(¢)fe Z for every fe X,
t € (0, 1]. We then proceed as in (2.10) and (2.9), replacing X and Y by Z,
respectively, to deduce

i [ S22 f—SE2 7Y fiz <2 [: | U@)f — U@/2)f|odv
< 2Dz J [40/2) | U@)f — £ lix + 27'0) | U@/D) f — fllx] v do
<201 +m) [ 790 | UE) S~ flx vt do,

and in a similar manner
> 18024 f — S@ 9 fllx <2 [ | UG)f — UGl2) v do
k=0 0

T £
<4 [ 1V f—fllxvrdo < 4 [ 2@ UGS — flixv do.
0 0
From these estimates we conclude that
2 [S(277 ) f — S(127%) f]
0
converges in norm || - ||z to an element of Z which has to be /' — S(¢)/, since
limg.o || S(F2-%)f — fllx = 0. Hence f€ Z, and furthermore, for ¢ = 1,

lfllz < Sfllz 4+ [2Dz(1 + m,) + 41 D40l U@®)f — flIx]
< const. || fll,.1.2

in view of the fact that
ISl <2 [ 1V lxds+2 [ UGS |zdo

< Myl flix + Dz z7Y(1/2) || flix -

This proves the theorem.
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A converse result is given by

THEOREM 4. Let % be an approximation process on X satisfying the Jackson
and Bernstein-type inequalities (2.4), (2.5) of order y(t) on X with respect io V.,
Furthermore, let z(t) be given as in Theorem 3 and such that @, ; is a functior
seminorm upper-bounded by a constant and lower-bounded by y(t). Then the
inclusion relation (3.4) for a normal Banach subspace Z of X implies that %
satisfies a Bernstein-type inequality (3.3) of order z(t) on X with respect tc Z.,

Proof. On account of (1.11) and (2.7), we have, by assumption,

Y <X, Y;0) = X,,.4CZ,

so that U(t)fe . #(Z) for every fe Z. Furthermore, (3.4) yields, for some
constant D,

10012 < D2 [1f 1 + [ 1106 — 11 UG flixz245) 57 ]

, ~1
< DSl |1+ Mol + M) [ 27357 di
At
+ CyDyy~ 1) ! y(8) z sy st ds],
Yo

The latter inequality holds since, by (2.1},
IUG) — U@ x < Mal + Mg) (1 <s <),
and by (2.5), (2.6),

IUGs) — NTUOS1x < Cyy(s) 1 UDS |y

<
< CyDyy(s)y ()i flix O <s <o
Now @, is upper-bounded by a constant and lower-bounded by y(s.

Replacing £(r) and z(¢) in conditions (1.9), (1.10) by z(r) and 1, respectively,
it follows that there is a constant Dz > 0 such that

LUz <[ U@z < Dzl flix 274),

which was to be shown.
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As an immediate consequence of Theorems 2, 3, and 4 and relation (2.7),
we have

CoRrOLLARY 1. Let X, Y and % be given as in Theorem 4. Furthermore,
let z(t) be monotone increasing with 0 < z(t) < z(1) = 1 and z(t) < m,z(t/2)
for t €(0, 1] and such that ©,, and D, ., are regular function seminorms, both
upper-bounded by a constant and lower-bounded by y(t). Then U satisfies
Jackson and Bernstein-type inequalities of order z(t) on X with respect to a
normal Banach subspace Z of X if and only if

X, ¥; 0 CZC (X, v; D). (3.5

This shows that if one has Jackson and Bernstein-type inequalities for %
of order y(¢) on X with respect to Y, the problem of finding such inequalities
of “lower” order z(t) is reduced to that of finding certain intermediate
spaces Z of X and Y satisfying (3.5). The applications in Section 4 will show
that this is a practical procedure.

A few words about this corollary as an interpolation theorem. Rewrite
condition (2.1) and the Jackson and Bernstein-type inequalities (2.5), (2.6) in
the form

HU@ — Iixxy < My -+ 1, | Ui, x1 < My ;
[ U(t) — Illy,x1 < Cyy(1), Il UDlix,v1 < DyyH1),

using the notation || U lltx,,x,) = SUPsex, |l Uf]|X2/HfHX1 for any linear operator
U on a Banach space X; into a Banach space X, . Now note that the first two
inequalities could be interpreted as Jackson and Bernstein-type inequalities
of order ¢° on X with respect to X. The ““if”” part of Corollary 1 states that,
in case y(t) = t*, o > 0,

I U@) = Ilizxy < Cz1%, [ UDlix,z1 < Dz t7#

for intermediate values 8, 0 << f < «, and corresponding intermediate
spaces Z satisfying (3.5), since @;, and &, ,, are upper-bounded by 1 and
lower-bounded by y(¢) = t=. Thus, one could interpret the conclusion of the
corollary as an interpolation of the above inequatilies for X and Y of order 1
and 7° to Jackson and Bernstein-type inequalities of intermediate order 78,
0 < B < a, on X with respect to the intermediate spaces Z satisfying (3.5).

We remark that in this form the “if” part of Corollary 1 could also be
established by a general interpolation theorem of Riesz-Thorin type for
linear operators on K-intermediate spaces (compare Peetre [17, p. 18]).

The next interesting question is under what conditions does % satisfy
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Jackson and Bernstein-type inequalities on Z with respect to Y,instead of on X
with respect to Y.

Tueorem 5. Ler % be an approximation process on X defined by (2.1)~(2.3}.

(a) If U satisfies a Jackson-type inequality of order y(t} on X with respect
to Y and a Bernstein-type inequality of order z(t) on X with respect 10 Z,
where D, ; is lower-bounded by y(t), i.e.,

13
f ¥y z7Wuw) ut du = O y(t) z74r)] (3.6}
0
by (1.10), then Y C Z and
U= flz <CZ V)y@)z ) [ fly  fe)), 3.7

ie., ¥ satisfies a Jackson-type inequality of (reduced) order y(t)z=Y(t) on Z
with respect to Y.

(b) If % satisfies a Bernstein-type inequality of order y(t) on X with
respect to Y and a “Jackson-type” one of order z{t) on X with respect to Z,
where D, ,, is lower-bounded by y(¢), i.e.,

A1
| ) z(u) wt du = O[y~Y(1) z(1)] (3.8
vt

by (1.8), then
LU Sy < DEZ, )y 0 z@) [ flz+ 1) (feZ), (9

i.e., % satisfies a “*Bernstein-type” inequality of (rediiced) order y(t) z7 Xty on Z
with respect to Y.

Proof. We carry on the estimates begun in Theorem 3 for fe ¥, by the
Jackson-type inequality (2.5) which gives, by (3.6},

o

2 I SU27f) — S+ filz

k=0

< [2D2l + m) + 4] [ 20| UGV S — vt de

<1 CY2DAL +m) + 41 [ 30) 740) vt e

S CUZ, )y z @ flv-
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In a similar manner, we obtain
U@ =50/ 12 < 2D:Cy /1y || [y0) =012 + 502) @] v~ do

S GZ Y)y@) 270 1 f Iy

for fe Y. Then, arguing as in Theorem 3, it follows that, for fe 7,

U f = SOF + ¥ 15024/ — S@D ] = U@ S —f

is an element of Z. This implies ¥ C Z, and with
CZ,Y)=C(Z,Y)+ CZ,Y)
it follows that
| U@ —flz < CZ )y 'O fly  (feX).
To prove (3.9), we use the estimate of part (b) of Theorem 1 and then the
Jackson-type inequality (3.1) for fe Z to deduce
| UOf 1y < DvB +m) [ 370) | URVS — Sl v do
+ Dym, y O U@ S — flix -+ Dy | flx y1(1/2)
< DyCoG +m) 112} [ 370 20) e do 4+ 50 20)
+ Dy | flly y(1/2).
Applying (3.8), this yields the assertion (3.9).

We now come to our main theorem which extends Theorem 1 and includes
the already mentioned assertion of reduction type.

THEOREM 6. Let Y, Z be normal Banach subspaces of the Banach space X,
let % and U(t)f be as in Theorem 1, and let D be a regular function seminorm.

(@) If % satisfies a Jackson-type inequality of order y(t) on X with respect
to Y and D is upper-bounded by a constant, then

D[y | UDSf Iy] < oo = P U@ S — flix] < .

If, in addition, % satisfies a Bernstein-type inequality of order z(¢) on X with
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respect to Z such that @, , is lower-bounded by y(t), and @ is upper-bounded
by z(t), then

Py UDSly] < 0 =feZ Plz(t) | U)f — flz} < 0. (3.1}

(b) If % satisfies a Bernstein-type inequality of order y(t) on X with
respect t¢ 'Y and © is lower-bounded by y(¢) and upper-bounded by a constani,
then

O U@ — fllx] < 00 = P[p{1) | UW)S1¥] < 0.

If, in addition, % satisfies a Jackson-type inequality of order z(t) on X with
respect to Z such that @, .. is lower-bounded by y(¢), then

feZ, DLz | U — flz] < o =PIy U fly] < 0. (3.11)

(c) If % satisfies Jackson and Bernstein-type inequalities of orders y{t),

z(t) on X with respect to Y, Z (i.e., % satisfies inequalities (2.5), (2.9), (3.1}
and (3.3)), where D, , and D, ,, are lower-bounded by y(1), then for every regular

Junction seminorm which is lower-bounded by y(t) and upper-bounded by (1},
the above three assertions are equivalent 1o each other as well as to

OK(y(t),f; X, V)] < 0 for feX.

Proof. The first half of (a) and of (b) have already been proved in
Theorem 1. To prove the second half of (a), we proceed as in the corre-
sponding part of Theorem 1, using an analogue of (2.8) where X is replaced
by Z and (2.5) by the inequality (3.7), in accordance with Theorem 5. We have

U@ =S5O f1z+ i | S(E2H) f — S22+ 1,
<2 JA,. U@~ U0V f 20V de + 2 [ U)f— U2) |z v do
= ZC(ZE Y) fj/z [Y(t) Z'_l(t) : U(l})fty - _}’(1)) Z—-l(v) { U(t)le] o1 dp

+202 1) | ) 70) | D) 1
YD) | UGN f 1o de
< 20(Z, Y) [my(t) 70 | U f 1

+ @2m, + m,) f : y@yz @) Uy fiyo? dv].
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Furthermore, we obtain directly from part (a) of Theorem 1, using 1 < z7(¢)
for 1 (0, 1],

HU@f—SOflix + é [ 8@279) f — (27 flix

<26y [@m, + 1) [ 50270 | VO |ro~ds + 3070 | VOS I,

Using both estimates, it follows from @[ y(¢) | U(#)f |y] < o by the upper-
boundedness of @ by z(¢) that

& [z UOF — SO f 1z +20) 3, 156257 — S+ 71] < co.

k=0

By the regularity (1.3) of @ this implies that

o0

X ISE27) f— S@E27) fllz < oo,

0
and hence

i[S(IZ"”')f— SE2* N fl=E6Of—-HeZ

for almost all 1€ (0, 1]. But then fe Z, and assertion (3.10) follows since,
for fe Z,

(U — flz <1 UDS - SOflz+ 3 | S@2) f — S@25 £

k=0

To prove (3.11) we proceed as in part (b) of Theorem 1, using an analogue
of (2.9), where X is replaced by Z and (2.6) by the inequality (3.9) according
to Theorem 5:

AL
i

UOfly<2DZ V) | O UG~ S
+720) 2(0) | U@ S~ f 1ot do
+20@Z, V) | UGS = Fle + 1 V0f —fld v do
+ Dy [ Uflxy i) ot do + DEZ. ) [ [y70)20) | UGS — 11
) 2(012) | U f —Fl o do
+ D) [ 110D —flx +1 U6V S = lx o do.
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Using the various properties of y(¢), z(f) and (2.1), we can estimate further,
as in Theorem 1, part (b):

»1
U@y <2DEZ V) |me [ 3@ 20) U S~ vt de

+ im0 21| UOf — £l

LIS 1Ay y(1[2) + AMy + 1) DZ, V)]
a1
+DZ, Y)me -my) | 3R 2 VRS — f iz
~1
T2(Z Y)Y | U@ S —flx v db.
Y ile

Since

Al
i

@ [50) [ 110G)S — Sl do] < m,B@, ) PLy(12) 1 U f ~ fix)
< mB@, )My + 1) BLy(0))

we can now conclude, just as in Theorem 1, that @[ y(&) | U{t)f |v] < o
provided ®{z(#) | U()f — f1z] < w and D[ y(1)] < o0, the latier relation
being satisfied by assumption and Lemma 1{c).
Finally, part (¢) is an immediate consequence of the preceding if one
observes that @ is upper-bounded by a constant if it by z(z) (see Lemnma 1{a})}.
Let us concretize this theorem in the representative case @ = D, .

COROLLARY 2. Let % be a linear approximation process satisfying Jackson
and Bernstein-type inequalities of orders y(t), z(t) on X with respect to ¥, Z,
and let z(t), y(t) satisfy (3.6) and (3.8). If the function seminorm D, ., satisfies
(1.7) and (1.8), then the following assertions are equivalent for i — 0 :

@ U@ f —flx = 012,
(b} L U@ |y = Oy ™5 L)},
© feZ, | UM —flz = 0lz7{(®) L)),
@ K(y(®),f; X, Y) = O[2()}

1If, in addition, conditions (1.9) and (1.10} hold, tien
1
(a) [ 10§ U@ f —flxle e de < oo,
0

(bY f: [RUO y(t) | U F iyl dt < oo,
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© ez, [ 12900 | U0f—f1d it de < o,
(@ [ 1920 Ko@), £ X, VF - de < w0

are equivalent for 1 < g < oo,

Let us remark that for the particular choice £2(¢) = 5, y(¢) = t' and
z(t) = t*, the assumptions of this corollary are equivalent to 0 < k < 8 < I

Let us also consider a discrete version of this corollary. By this we mean
that % is defined by a sequence ¥~ = {V,}7 of operators V,, of £(X) which
satisfy the basic conditions (2.1)-(2.3). Setting U(t)f = ¥/, this amounts
to the conditions

[ Vaflx < My llfilx  (neN), .1y
ViVie = ViV (m, neN), 2.2y
lim | V,.f — fllx = 0 2.3y

fl

for every f e X, where N denotes the set of all positive integers. The Jackson
and Bernstein-type inequalities of orders p(¢), z(¢) on X with respect to ¥
and Z take then the particular form

I Vaf — flix < CypUn) | f1y (fey), @3
Vaf€Y, |Vufly <Dy UM fllx  (feX).  (26)
1 Vaf — flix < Czz(Ufn) | f1x (fez), @Iy

Vaf€Z, | Vaflz <Dz WU fllx  (feX) (33
for all n e N. Note that here the assumptions V(¢)fe . Z(Y), V(t)f<c . #(Z)
reduce to ¥V, fe Y and V, f < Z, respectively, for all n € N.

Now we can state the discrete version of the above corollary (the case
g = oo, for simplicity).

CoRrOLLARY 3. Let {V,}7 be a sequence of operators of &(X) satisfying
.1Y—~2.6)" and (3.1), (3.3). Let Q(r), y(t), z(t) satisfy, furthermore, the
conditions (3.6), (3.8), (1.7), and (1.8). Then the following assertions are
equivalent, for n — oo:

(a) | Vaf — fllx = O[L2(1/n)],
(®) | VS ly = OLy~(1/m) Q(1/n)],
© feZ, |Vof—flz= Olz7'(1/n) 2(1/m)],

@ K(y(1/n), f; X, Y) = O[L(1/m)].
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This result extends our previous ones in [9] and contains those announced
in [10] for the particular instance y(¢) = ¢, z(t) = #* and £(r) = £%.

4. APPLICATIONS

4.1. Holomorphic Semigroup Operators

Let us apply the results of the preceding section to approximation
processes generated by a one-parameter family F = {7(¢) : 0 < ¢ < o0}
of equibounded semigroup operators in &(X) of class (Cp), with
M, = sup, || T(#)|l << co. Then conditions (2.1}«2.3) are satisfied for the
family J, ={T.(0) =1~ I —T®O} :0<t <1}, reN, for which
Ty(t) = T(f). The problem now is to find subspaces of X for which 7,
satisfies Jackson and Bernstein-type inequalities. As the following will show
this can easily be achieved by considering the domain D{(—A4)") of the
fractional power (—A4)", 0 <<y < r, of the infinitesimal generator-A.

DepNITION 9. An element /& X belongs to D({(—A4)"), 0 <y < r,if and
only if

slim ;% [ — TOV S 7 dr = (—ayf

v e

exists, where

~ 70

Cyp = J (1 — ety ¢t dt.
0

Concerning this definition and other equivalent ones, connected with the
names of Phillips and Balakrishnan, see Westphal [21]. In case y is a positive
integer, it coincides with the usual one by a result of Lions-Peetre [15].
Furthermore, it follows for f'e D((— A4)) (see [21]) that

[ — TWYf = TO) | polu) T(tw) (—Ayfdu O <y <r,t>0),
0

4.1}
where p, ,(u) is a function of L,(0, o) defined by its Laplace transform

T — ey = | : e, () du.

LemMa 6. Let {T(¢): 0 < t < oo} be the above-mentioned semigroup of

640/5/3-8
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operators. Then for each vy, B with 0 <y << B the inclusions (recall Section 1
Jor notation)

(X, D((—A)"); D)) C D((—A)") C (X, D(—A)); L) 4.2)

are valid with respect to the norm || f||x + (—A) f|x defined for f € D((—A)").
Furthermore, if the semigroup is also holomorphic, the approximation process 7,
satisfies Jackson and Bernstein-type inequalities of order 17,0 <y <r,on X
with respect to D((— A)), i.e.,

| TA0S =1 [T70) Mo [ 1 pa) d] (—AYS I (Fe DAY,

(=AY T fllx < Dryt ™I flx (S X).
Proof. From Definition 9 we conclude by (1.14):

(APl < 5% [ 47 1= Tl 1™ ds

< GH Mg + D' fllx + 63D alolt f; T)] < o
for fe (X, D(47); DY), r > v; and from relation (4.1):

S, oot £ TN < [176) My [ 1] da] =71 43)

for fe D((—A)Y), so that, again by (1.14), relation (4.2) is established for
integral B = r. But (4.2) also follows for nonintegral B since (see Berens

[2, p- 46)),

(X, D((—A)°); DL = (X, D(A7); DY) 1<g<m0<y<f<r).
“4.4)

In order to show the existence of Bernstein-type inequalities we consider first
the case y = r of highest order.® Then by the holomorphic property of T(),
the range R[7(¢)] is contained in D(A4"), and 7(¢)fas well as T,(z) f are strongly
continuous (and hence measurable) for each /€ X with respect to the Banach
norm || f|lx -+ {| A7f||x for D(A7). Furthermore, the Cauchy integral formula
(see [4, p. 17, 292]) yields, for some « > 0, N, > 0,

. 1 T dl
H 4 TT(t)H - H 7;77 flg—t.[=t sin « (C - t)r+1

5 This is in fact the highest possible order since || T{#)f — fllx = o(t"), t — 0 4, implies
A'f = 0 or T{t)f — f = 0 for all + > 0. Concerning this “saturation” theorem see [4,
p. 102].

< Nrt‘r’
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so that a Bernstein-type inequality of order " on X with respect to D{4") is
satisfied. The Bernstein-type inequality of order ¢, & <<y < r, iS now an
immediate consequence of Corollary 1 since its assumptions are fulfilled in
view of (4.2) and 0 <<y < r. The corresponding Jackson-type inequality
follows directly from (4.3).

Choosing Y= D(A"), »(t) = t"and Z = D((—Ay), z(z) = 17,0 < y < v,
the hypotheses of Corollary 2 are satisfied for the family .7, . Its application
therefore yields

TeEOREM 7. Let F, be the approximation process
T =1—[T—THOF:0 <1 <1, reN,

where {T(r) : 0 << 1 << oc} is an equi-bounded family of holomorphic semigroup
operators of class (C,). Furthermore, let £(i} be a nondecreasing function on
(0, 1} satisfying for 0 < vy <r, t — 0+,

t 1

[ Qwyurdu = o), [ Qe dr = 0], 45
0 t

a1 t

J Qe u ™V du = O[], [ Q) wtdu = O &2-Hnl 4.6}
t Y

If fe X, the following assertions are equivalent for each q, 1 < g < oo:

(a) [ON TS — Flixl T dr < oo,

1
[
1
Y]

1

]

1

®)  feD(—), [ QMO N—APTA)S — (—AYS e i di < o,
| 10 ) AT f Ll 17 e < o,
N

(d) Q-1(0) K(t", £, X, D(A"))e -2 dt < o0,

0

Let us remark that the equivalence (a) < (d) has already been shown in
{17, 18] for functions £2(¢) which are essentially submultiplicative. However,
our theory is not limited to this case (compare footnote 3). In case £X(¢) = 7,
0 < 8 < r,y aninteger, (a) is equivalent to (b) also by the reduction theorem
of relation (1.15) since (—A)” commutes with 7.(¢), i.e.,

(A T(O)f — (A f = —[I = TOI(—4Arf (FeD(—4). 4.7



336 BUTZER AND SCHERER

Assertion (c) should be compared with the following equivalent statement:
© | e 4T £l 1 dr < oo,
0
which is of Zamansky’s type (see [4, p. 210] and the references given there).

4.2. Resolvent Operators

As a second example of a linear approximation process, we consider the
family of resolvent operators {AR(A; 4), A > 0} of the infinitesimal generator
A of an equi-bounded family of semigroup operators {7(¢) : 0 < ¢t << oo} of
class (Cg), namely,

ARQ; 4)f = A | TeNT() fdf (0> 0; fe X).

Setting R(t) = AR(A; A) with 1 = A%, this family of operators satisfies the
conditions (2.1)-(2.3) for (0, 1] or Ae[l, o0) since AR(A; A)f is strongly
continuous and uniformly bounded for A > 1, commutative in view of the
resolvent equation

Ry 5 A) — R(Ay 5 4) = (A2 — A) Ry 5 4) R 5 4),
and convergent to f for every f€ X since ([4, p. 131]),
lim | AR A)/ — /llx = 0.

In order to establish Jackson and Bernstein-type inequalities, we make use
of the defining relations for the resolvent R(A; 4), namely,

(@) M —ADRNAf=f (feX),
(i) R A — A f=f (fe D).
By (ii) it follows that, for A > 1,
AR Af — fllx = | R A) Afllx < A Mg || Aflx  (fe D(4)),
and by (i), AR(A; A)f e #(D(A)), and
| AQRD; Df)ix = A ARQ; Af — fllx < MMg + D fllx  (feX),

(4.8)

where M, = sup,=q | AR(A; 4)]| < co.
Hence the process # = {R(t): R(t) = AR\, A),A =10 <t <1}
satisfies Jackson and Bernstein-type inequalities of order 7 on X with respect
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to D(A). Since || ARQA; A)f — Fll = oA, A — w, for fe X implies Af = G
or AR(X; A)Yf — f = 0 (see [4, p. 153]), this order is the best possible or
“saturation” order of the approximation process % on X. An application of
the “sufficiency’” part of Corollary 1 to the family # gives Jackson and
Bernstein-type inequalities of intermediate order v, 0 <<y < 1, on X with
respect to D({— A)v), since its assumptions are satisfied in view of (4.2) and
0 <y <L
We can now state

THEOREM 8. Let # be the above approximation process. Furthermore, let
w(X) be a positive nonincreasing function on [1, ) satisfying for 0 <y < 1,
A— 00,

~00

Al
J w(u) w=t du = O[Vw(N)], J W) u - du = OA"w YN)], (4.9
A 1
A ©
[ w() du = 0P, f w M) u? du = O N (4.10)
Jy 2
If fe X, the following assertions are equivalent for 1 < g < o0:

@) c [w N [| AR(A; 4) f — filx]* A dA < o0,
(b) flE D((—A)"),

1m0 X (=AY AR A)f = (=AY e X b < o,

(©) ‘ [w ) [| ARQ\; 4) flixl Xt d) < oo,

(@) [ ' [t K¢, f; X, DD}t dt < oo,
“0

(e) f : [~ Yt Vo, (1, f, T 11 dt < co.

Proof. The equivalence of the first four assertions follows just as
Theorem 7 by applying Corollary 2 to #Z = {R(¢) = AR(A; A) : 0 < ¢ < 1,
Aell, 0}, ¥ = D(A4), y(t) = tand Z = D((—A4A)), z(t) = 1, 0 <y << L.
We have to observe that in view of the transformation A = -1 the
assumptions (4.9), (4.10) coincide with (4.5), {(4.6) for the nondecreasing
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function () = w(1/#), and that this corollary yields, e.g., instead of (a),
an assertion of type

@) f: [ XtV 1| R f — [l x]? 71 dt < oo,

which, however, is equivalent to (a).

The equivalence (d) <> (e) is established by relation (1.14).

Let us remark that in case w(A) = A~° the equivalence (a) <> (e) has already
been shown in Butzer-Pawelke [6] for ¢ = oo, and by Berens [2] for
1 < g < o0. The equivalence with (b) could also have been established by
the above-mentioned reduction theorem of relation (1.15) since AR(A; 4)
commutes with (—A)” just as 7,(¢) does (compare (4.7)). Note further that
for this particular approximation process # the equivalence (a) < (c) is
given in a trivial manner by the relation (4.8,i).

As examples of approximation processes generated by sequences of
operators considered in Corollary 3, let us mention summation processes of
Fourier series of 2a-periodic functions f belonging to C,, or to one of the
Lebesgue spaces L, , 1 << p << . These are of the form

Vn(fn x) = Z )\k,an(k) ez'ka::
k=—n
where f (k) = (1/2n)) f:, f@u) e¥ du is the kth Fourier coefficient of f
(k =0, +1, +2.,...), the summation factors A, , satisfying certain conditions.
Various examples of such summation processes have been discussed from this
standpoint in Butzer-Scherer [7, 10].

4.3. Riesz-Means of the Fourier Inversion-Integral

We conclude by considering an approximation process which belongs to
none of the above categories of examples, namely, the Riesz-Means of the
Fourier inversion-integral of functions fe L?(—c0, o0), 1 <p < 2. It is
defined by

Ry DI = G1VER) [ f(x = 1) xoalprd dit (p >0, p—> o), (411)
the kernel y, ; being defined though

(A —=ToPp, lvl<
| =

Xrs0) = jo (v, 8 >0 fixed),

) =1V 2_77) ffw e~"%f(x) dx denoting the Fourier transform of an
element f'e L?(— oo, o0). Setting p = ¢~1, the family

é%v,a = {Rv.é(t)f: -R'y,ﬁ;p(f) tte (09 1], pE [1: OO)}
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is a linear approximation process on L¥(— co, o0), satisfying (2.1)~(2.3) as
well as Jackson and Bernstein-type inequalities of orders p= or #¥ oun
L?(— o0, o0) with respect to the space

[L7]9) = {fe LA(— o, ) : 3g € L¥(— w0, 20) with | ¢ |7 f () = ().

This order is the highest possible (saturation order) of the family £, ;.

Furthermore, it can be shown that [L?]% = D((— A4)”), where 4 denotes the
infinitesimal generator of the holomorphic contraction semigroup given by
the singular integral of Cauchy-Poisson; thus

D(4) = {fe L*(—w, ) : 3g = Af € L*(— o0, o) with | 2 | f (r) = g™{)}.

For all these facts we refer to Berens [2, pp. 82-83], Butzer—Nessel [5].
Now let A’ be the infinitesimal generator of the ordinary translation group
on L#(— o0, ), i.e., A'f = f' and

D(4) = {fe LX(—c0, c0) 1 f' = ge L —o0, ), itf "(v) = g ()}

Denoting D((—A4')") by [L?]™, (—A')*f by f, and (—AY f by F&} (the
symbol for the fractional Riesz-derivative; for details see [5]), we have the
following result concerning “intermediate” Jackson and Bernstein-type
inequalities for Z, ; :

Lemma 7. The approximation process #,s, v,d >0, satisfies the
Jollowing inequalities on L*(—c0, ), 1 <p < 2,0 <« < y:

R, 0l ) = fllps < €, 8,0, p) p 1 /™ (FEILT), (4.12)
LRI e < Do, 8,0, 0) p* U flly (fEL(—00, ),  (4.13)
Ros ) —Slpp < CO 8,0, p) p ™I/ N (FE L), (4.14)
IRS.(Plly < D', 8, 0, p) o[ flle (fELY—20, ),  (4.15)

where C, D, C', D’ are positive constants depending only upon the parameters
indicated.

Proof. The first two relations are an immediate consequence of (4.2} and
Corollary 1 which interpolates the Jackson and Bernstein-type inequalities
of order t* for £, ; to those of order 7%, 0 < o <Cy, with respect to the
intermediate space [L?}{}. In view of the fact that (4)? = A2, we can derive
from Lemma 6, for 0 << o < vy,

(X, D(—A)"); D) C D((—A"Y) C (X, D(—A)); D),
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using (4.2) fory = acand B = 2r > «a, r € N, and then (4.4). The application
of Corollary 1 yields the inequalities (4.14), (4.15).
We are now able to state

THEOREM 9. Let Z, 5 be the linear approximation process given by (4.11).
Let w(p) be a positive nonincreasing function on [1, ) satisfying, for p — oo,

[ wyu du = o), | ™M) ™ du = O[p ™Y (p)],

)

J': @) 1 du = O[p™w(p)], f " o) e dy — Olp 2w Y(p)].

If fe LY(— o, o), 1 << p < 2, the following assertions are equivalent for
1 <g< 0,0 <o <ay < pand any positive integer r > oy — oy -

(a) JT [wXp) || Ry.5:0(f) — fllu) pt dp < o0,
(b) felL”T™, J [w™(p) ™ | RS} (1) — 11,1 p7 dp < oo,
© I w ™) 57| RE2 (DT o7 dp < o0,
1
(d) f [w—l(t"‘l) K(tag’f; LP’ [Lﬂ]{az})]q Lt < o,
0

€ £ eL”(—o0, ),

f ' [0 't tMw,(t, )] t T dt < 0.

Proof. The equivalence of the first four assertions follows by Corollary 2
applied to ¥ = D((—A)*) and Z = D((—A)*) in the previously mentioned
fashion, observing the transformation p == ¢~1, since Lemma 7 yields all the
hypotheses necessary for this application. We can also replace the Riesz-
derivative f{= in (b), (c), and (d) by f@, depending upon which of the
inequalities are used in Lemma 7. Now, since R:,T;;p( ) = R, 5 (f*)) for
JSe [LP] (this commutativity allows a new proof of the equivalence (a) <> (b)
by reduction theorems, compare (4.7)), Theorem 1 applied to f'® for the
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case ¥ = D(A"), ® = D, ,, where £(t) = w(r 1) 17 (compare footnote 3)
yields the further equivalent assertion

dy Y eL?(—o, w),

a1
J [ Y K@, f L7 LT i dt < o
0

for any r > o, ~— o4 . But this is equivalent to (&) by relation (1.14).
Particular cases of this theorem are to be found in Berens [2], Butzer-
Nessel [5], and in the references cited in the latter.
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