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TO JOSEPH L. WALSH ON IDS 75TH BIRTHDAY, IN ADMIRATION

In some recent papers the authors [7-9] have treated sequences
{Vn ; n = 0, I, 2,...} of (commutative) operators Vn E 6"(X) (= Banach
algebra of endomorphisms of the Banach space X) satisfying Jackson and
Bernstein-type inequalities. Their results include "direct" and the corre
sponding "inverse" approximation theorems, theorems of Zamansky-type
for such operators, as well as theorems of "reduction" type. Within a certain
framework it was shown that the assertions of these four types of theorems
are equivalent to each other.

The purpose of this paper is fivefold. First, the sequences depending
upon the discrete parameter n, n ->- 00, are replaced by the family
q, = {Vet) : °< t :0:;; I} of operators in 6"(X) depending upon the continuous
parameter t, t ->- 0+. While this is a minor modification (and includes the
discrete case) the major one consists in broadening the notion of order of
approximation by using the general concept of a function norm <1>. To be
specific, with the notation <1>o,oo[g{t)] = SUPtE(O,l] t-oep(t), ep being any
nonnegative measurable function on (0, I], the (classical) approximation
assertion

[I V(t)f - fll = OCtO) (tE(O, 1], t->-O+)

may be restated as <1>0,00[11 V(t)f - fllx] < 00. More generally, the approxi
mation order oCtO) is to be replaced by O(Q(t», Q(t) being a monotone
increasing function of t on (0, I] (de la Vallee Poussin [20, Chap. 4] seems
to be the first to use such Q's in approximation theory; see also the account
in Timan [19]).

* Work of this author was partly supported by a research grant from the G6rres
GeseIIschaft, Cologne.
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More generally, one may definet

309

sup Q-l(t) rp(t),
IE(O,l]

q = OJ

1 ~ q < oc,

the case q = CfJ giving the approximation O[Q(t)], This would give approxi
mation in the setting of the theory of K-intermediate spaces (see the treatment
in the case Q(t) = to in [4]). In their most general form, function seminorms rp
will be introduced as functionals satisfying a suitable system of axioms, and
fitted into the framework of approximation as above. An approach via
functional norms was already followed in interpolation-space theory by
Gagliardo [11] and Peetre [17, 18] (see the discussion in Butzer-Berens
[4, pp. 213-215]). In this paper, a somewhat more general system of axioms
will be set up. This will enable us to present the basic structure and funda
mental theorems of linear approximation processes in a systematic and
axiomatic fashion.

Third, Jackson and Bernstein-type inequalities will be intensively investi
gated. In the light of the foregoing, it will be postulated that the family "Ii
satisfies such inequalities of order y(t) on X with respect to a second Banach
space Y C X, "COO in the sense of continuous embedding. In previous papers by
various authors [2, 7, 9, 17] such inequalities were considered only in the
particular case y(t) ,= t\ ex > O. Given a Jackson and Bernstein-type
inequality of order yet) on X with respect to Y, necessary and sufficient
conditions will be established in order that there exist such inequalities of
"intermediate" order z(t) on X with respect to certain spaces Z, which are
"intermediate" between X and Y. (In the particular instance that yet) = t~"

z(t) = fB, this means that 0 < ex < f3). In most of the applications this boils
down to the fact that only Jackson and Bernstein-type inequalities of
"highest" possible (or saturation) order need be verified.

Fourth, it will be shown that Jackson and Bernstein-type inequalities for
the pairs X, Y and X, Z, with respective orders yet) and z(t), imply such
inequalities for the pair Z, Y with "reduced" order y(t)(z(t))-1, provided that
yet) is "better" than z(t) (which implies that Z C Y). This will enable us to
establish the main result (Theorem 6) of this paper, an equivalence theorem
on the order of approximation of U(t) to the identity I in the setting of the
function seminorm (p. Whereas this theorem in its preliminary version
(Theorem 1) is only concerned with the equivalence of "direct," "inverse.'"
and Zamansky-type assertions, the theorem in its general form includes a

t Note that below Q-l(t) (or (Q(t»-l) always stands for l,lQU), and not for the inverse
function.
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fourth assertion equivalent to these, namely, one of "reduction" type. By
this is meant that approximation is taken in a "stronger" norm, but with a
certain loss of the order of approximation. (In the applications, this signifies
simultaneous approximation of a function and its derivatives). All in all,
the axiomatization presented leads to a clarification and simplification on the
one hand and allows a more general theory on the other. The presentation is
self-contained, the proofs being carried out in detail.

Fifth, it will be seen that the theory is built up in such a way that it contains
the corresponding investigations (see [4]) for holomorphic semigroups of
operators {T(t) : 0 < t < oo} of class (Co) in g(X), as well as for the family
of resolvent operators {AR(A; A) : 0 < A < oo}, A being the infinitesimal
generator of the semigroup. Moreover, it also includes a large variety of
applications to various summation processess of Fourier series, the Riesz
means of the Fourier-inversion integral receiving special attention. At the
same time this paper provides complete proofs of results announced in
Butzer-Scherer [10].

1. PRELIMINARIES

We begin with some basic definitions.

DEFINITION 1. Given a Banach space X, we denote by .It(X) the class of
all X-valued functions on (0, 1] which are strongly measurable. In particular,
if X is the set R1+ of all nonnegative reals, we write A't(R1+) = "#/+.

DEFINITION 2. A/unction! seminorm C/;J is a functional C/;J defined on </1/+
which is nontrivial (i.e., there exists a nonnull if E A'/+ such that C/;J(if) < 00),

and satisfies for each C/;J E A't+ :

C/;J[aep] = aC/;J(ep) (IX ~ 0),
<Yj <Yj

ep(t) ~ L ep],;(t) a.e. => C/;J(ep) ~ L C/;J[epd,
],;=0 k~O

C/;J[ep(t)] < 00 => ep(t) < 00 a.e. (ep E A+).

(Ll)

(1.2)

(1.3)

In the following, we shall study properties of function seminorms which are
important for the theory in the subsequent sections. They are more general
than those in [12] and are partly related to well-known inequalities ofHardy.

DEFINITION 3. A function seminorm C/;J is regular if, for each ep E .It+,

(1.4)

where C", is a positive constant.

1 Compare Gagliardo [Ill, Peetre [17] and Goulaouic [12] for the notion of a function
norm.
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DEFINITION 4. Wis upper-boundedhy z(t) (z(t) E Jl'l"+), iffor some constant
A(W, z) > 0,

W[z(t) cp(t)] ,;( A(W, z) W[z(t) cp(t)] (cp E JI[+), (1.5)

where

J
.t

cp(t) = ep(u) u-I duo
o

Wis lower-bounded hy yet) E vt{+, if

W[y(t) pet)] ,;( B(W, y) W[y(t) ep(t)]

for a constant B(W, y) > 0, where

I

p(t) = It ep(u) u-I duo

(rp E j{+), (1.6)

LEMMA 1.2 Let Wbe afunction seminorm.

(a) If W is upper-bounded by ZI(t) E j{+, it is also upper-bounded by
every zlt) E vlt+ such that Z2(t)/ZI(t) is nonincreasing; in particular it is upper
bounded by any constant ifZI(t) is nondecreasing.

(h) If W is lower-bounded by Yi(t) E o/#!~, it is also lml'er-bounded by
every ylt) E vI{+ such that Y2(t)/Yi(t) is nondecreasing.

(c) If W is upper-bounded by a constant and lower-bounded by a non
decreasing bounded yet) E vI{+, then W[y(t)] < CD.

Proof Part (a) follows hy (1.2) and (1.6) since

W[Z2(t) cp(t)] = W [ZI(t){Z2(t)/ZI(t)} ( ep(u) u-I dU]

,;( W [ZI(t) r{Z2(U)!Zl(U)} ep(u) u-1 dU]
o

,;( A(W, Zl) W[Z2(t) <pet)].

Taking Z2(t) = const., we see that W is upper-hounded by any constant
provided ZI(t) is nondecreasing.

In a similar manner, assertion (h) follows in view of

W[Y2(t) pet)] ,;( W[Y1(t) r{Y2(u)/h(U)} ep(u) u-1 du]

,;( B(W, Yi) W[Yit) ep(t)].

2 Here and in the following, the monotonicity could be weakened to quasimonotonicity
in the sense of Bernstein [3].
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Finally, let ifi be a nonnull function in J{+ with eP[ifi] < 00. Then
eP[~(t)] < eP[ ifi] < 00 since eP is upper-bounded by a constant. By (1.3) it
follows that

,toI ifi(u) u-I du < 00
• 0

for some to EO (0, 1]. Hence, for the function ifi*(u) = ifi(u) for 0 < u ~ to, = 0
for to < u ~ 1, one has

o< J: ifi*(u) du < 00

and eP[ifi*] < 00, by (1.2). Now, applying (1.5) for z(t) = I and (1.6), we
obtain, by (1.2),

eP[y(t)] ~ [J: ifi(t) dtrI

ly(l)eP [J: ifi(u) uu-I dU] + eP [yet) f: ifi(u) uu-I duJ!

~ [f ifi(t) dtr
I
{y(l) A(eP, 1) eP[ifi(t)t] + B(eP, y) eP[y(t) ifi(t) tn

o

~ [J: ifi(t) dtr
I

[A(eP, 1) + B(eP, y)] y(l) eP[~] < 00.

Lemma 1 already justifies in some sense the terminology of lower- and
upper-boundedness of eP. This becomes still more apparent when one
considers the most important examples of eP, namely,

ePf.!.q[cp] = lJ: [.o-I(t) cp(t)]q t-I dtrjq (1 ~ q < 00),

ePf.!.co[cp] = sup .o-I(t) cp(t) (q = 00),
te(o,Il

where .o(t) is a positive nondecreasing function of JI+. In the case .o(t) = to,
e> 0, we shall write eptO,q = ePo,q . It is easily verified that ePf.!,q is a function
seminorm, since it satisfies conditions (1.1)-(1.3) and is nontrivial in view of

It is, moreover, regular3 since

3 We remark that in order to show the regularity of ep it is sufficient to assume
!J(tj2) < const. !J(t) instead of assuming !J(t) to be nondecreasing.
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We shall now investigate how lower- and upper-boundedness may be
expressed in terms of Q(t).

LEMMA 2. Let Q(t), yet), and z(t) be posith'e functions in j(+ and let flU)
be l1ondecreasing.

(a) The function seminorm epQ.oc is upper-bounded by z(t) if and only (f

.t
J r 1(u) Q(u) u-1 du = O[Z-l(t) Q(t)],

o

and is lower-bounded by yet) if and only if

.1Jt F 1(U) Q(u) u-l du = O[y-1(t) Q(t)]. Its)

(b) The function seminorm epQ,l is upper-bounded by z(t) if and only if

.1

Jt z(u) Q-1(U) u-1 du = O[z(t) Q-1(t)],

and is lower-bounded by yet) if and only if

.tJ y(u) Q-1(U) u-1 du = O[y(t) Q-l(t)].
o

{I.9)

(1.10)

(c) The function seminorm epQ,q , 1 < q < 00, is upper-bounded by z(t)
if both (1.7) and (1.9) are valid, and is lower-bounded by yet) if both (1.8) and
(1.10) are valid.

Proof Setting g(u) = cp(u) z(u) Q-l(U) u-I,

.1

V[g(u); t] = t-1z(t) Q-l(t) J0 g(u) rl(u) Q(u) du

and
.1

h(u) = cp(u) y(u) Q-l(U) u-t, W[h(u); t] = t-ly(t) Q-l(t) j hell) y-l(U) Q(u) du,
.. t

we can rewrite conditions (1.5) and (1.6), in case 1 :S;; q < 00, in the form

II V[g(u); t] II£q[o,l] :S;; A(Q, q, z) II g li£"[o,,-] ,

Ii W[h(u); t] II£q[o,l] :S;; B(Q, q, y) II h 1'£q[o,l] ,
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respectively, where II . IIL
q
lO,I] denotes the usual norm of the space of all

functions in ./t+ whose qth power is Lebesgue-integrable. Since one can
assume that the right sides of these inequalities are finite, conditions (1.5)
and (1.6) state that V and W, regarded as linear operators on Lq[O, 1] into
itself, are bounded. In case q = 1, this is equivalent to the assertions

1

II V IllL1,L1] = sup Z-1(U) Q(u) J z(t) Q-I(t) t-l dt < 00,
UE(O,I] "

II W IllLloL1] = sup y-1(U) Q(u) ryet) Q-I(t) t-l dt < 00,
UE(O,I] °

which are in turn equivalent to (1.9) and (LlO), respectively. A similar
argument, in case q = 00, proves part (a). Then the general case 1 < q < 00

in part (c) follows from the cases q = 1 and q = 00 by the well-known
interpolation theorem of Riesz-Thorin applied to the operators V and W.

We remark that for z(t) = 1 and yet) = tk, conditions (1.7) and (1.8) are
precisely those on generalized moduli of continuity used by Bari-Steckin
[I] in order to establish some approximation theoretic equivalence theorems.
Furthermore, part (c) contains as a particular case well-known inequalities
ofHardy (see Hardy-Littlewood-P61ya [14, pp.245-246]),in which Z(U)Q-I(U)
and y(u) Q-I(U) are of the form t-~ and ttl, respectively, with ex, f3 > 0. In this
case one easily verifies (1.7)-(1.10). Specializing further, with Q(t) = t 8 ,

z(t) = tli; and yet) = t l , 8 > °and k, 1 being nonnegative integers, condi
tions (1.7), (1.9) are equivalent to 8 > k, and (1.8), (LlO) to 8 < I.

Function seminorms will be now employed to construct Banach subspaces
of a given Banach space X.

DEFINITION 5. Let Xbe a Banach space. We denote by .A/'+(X) the class of
all functionals on the product space (0, 1] x X into RI + whose compositions
with the projections on X and (0, 1] are continuous seminorms on X and
belong to vI{+, respectively.

DEFINITION 6. We denote by X(([>; M) the subspace of all elementsfE X
such that ([>[M(t,f)] < 00, where ([> is a function seminorm and M(t,f)
a functional belonging to A/"+(X).

DEFINITION 7. A subspace Yofthe Banach space X is said to be a normal
Banach subspace of X if there is a seminorm I . Iy defined on Y such that Y
is a Banach space with respect to the norm II '11y = II '11x + I . Iy.

LEMMA 3. ([>[M(t,f)] is a seminorm, and the space X(lJ>, M) is a normal
Banach subspace of X with respect to the norm Ilfll<p.M - Ilfllx + ([>[M(t,f)].



JACKSON AND BERNSTEIN-TYPE INEQUAUTIES 315

Proof First, it is obvious that [[/II<p,Af = 0 if and only iff = O. Second,
one has by (Ll) and (1.2),

q>[M(t, (Xdl + cx2!z)] ~ q>[1 (Xl ! M(t,fl) --;- i 0:.2 I M(t,f2)]

~ lexl I q>[M(t,fI)] + I (X2 I q>[M(t,f2)].

It remains to show that X(q>; M) is a Banach space with respect to the
indicated norm. This is equivalent to the fact that for every sequence
UnK, In E X(q>; M), with L~ llin 11<p,M < co, we have L;in E X(q>; M). But
for such a sequence also L~ Il/n Ilx is convergent, and hence L; In = IE X
since X is complete. Furthermore, the property (1.2) of q> together with the
continuity of the seminorm lY1(t,/) yield

11/11<p,M = II f fn II + q> [M (t, f f,,)]
n=! X 'n=l

00

~ L {ll/n Ilx + cP[M(t,j,.)]} < CIJ,
n=l

so thatfEX(q>; M).
A special instance of a functional belonging to ",V+(X) is the K-functional

of Peetre [16] (see [4, p. 166]). If Y is any normal Banach subspace of X,
it is given (in a modified form) by

K(t,f; X, Y) == inf (1[1 - g Ilx + t Ig Iy)
YEY

(fEX; 0 < t < CIJ).

LEMMA 4. The K-functional K(t,f; X, Y) has the following properties:

(11' T2 E (0, 00»,

K(t,f; X, Y) ~ Ullx (fE X, t E (0, C'J»,

K(t,j; X, Y) ~ tilly (fE Y, t E (0, co».

We omit the proof of these relations which are almost obvious. They shmv
that the K-functional is monotone increasing as a function of t, and for a
fixed t is a continuous seminorm on X and thus of class A/"+(X). Therefore,
in view of Lemma 3, the spaces

X(q><Yl; K) = (X, Y; q>(Yl) = {fE X: q>[K(y(t),j; X, Y)] < C'J},

where q>(Yl[g{t)] = q>[<pC y(t»] and yet) is monotone increasing with
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o < yet) :(; 1,4 are normal Banach subspaces of X. If if> is regular and
lower-bounded by yet), the inequality

if>[K(y(t),f; X, Y)] :(; if>[y(t)] Illy

is valid. We can abbreviate this in the form

Y < (X, Y; if>(Y) ex,

(fE Y),

(1.11)

where Xl C X 2 , for Banach spaces Xl' X 2 , means that 1I/IIx :(; M 1I/11x
2 1

for everyI E Xl , M > 0 being a constant, and YI < Y2 , for normal Banach
subspaces YI , Y2 of X, means that II Iy :(; M' II Iy for every IE YI ,

2 1

M' > 0 being a constant. In view of (1.11), the spaces (X, Y; if><Yl) are called
K-intermediate spaces.

A representative example of such spaces is obtained when Y is equal to
D(A'), i.e., to the domain of the rth power of the infinitesimal generator A
of a one-parameter semigroup:Y = {T(t) : 0 :(; t < oo} of operators of class
(Co), of a family of operators of C(X), the Banach algebra of endomorphisms
of X, which satisfy for each/E X,

T(O) = I, T(tl + t2) = T(tl ) T(t2)

lim [[ T(t)1 - Illx = O.
t-o+

(1.12)

In this case we set Illy = II A111x and II Illy = ll/lix + [I A111x for
IE D(A'), so that D(A') is a normal Banach subspace of X. Now there exists
a fundamental relation between K(t',f; X, D(A'» and the rth modulus of
continuity of the semigroup defined by

wrCt,f; :Y) = sup II [T(h) - I]11!x .
Ihk:;t

LEMMA 5. For everyIE X and t E (0, 1],

wr(t,f;:Y) :(; 2r(My + 1)' K(rr,f; X, D(Ar»

:(; (4r}'{My + 1)' wr(t,f; :Y), (Ll3)

where My = SUPtE(O.I] II T(t)11 < 00.

Proof The left side of the inequality (Ll3) was established in Butzer
Berens [4]. Since an explicit proof of the right side is to be found in [4] only

4 Concerning more general conditions which assure that 'I'(y(t» belongs to v/t+ for
every 'I' E J{+, see Halmos [13, p. 81].
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for r = 1,2 and in a weaker form, we shall prove it here, First, we note the
relation

[T(t) - 1]'1 = Ar ( dUI ", .r: T (~ ui ) f dU f

l.~_

which is easily proved by induction. Therefore

is an element of D(A'), for I = 1,2,... , satisfying

Arg",l = (rl(lt)Y[T(ltjr) - 1]'1

Next, we set u = L;~I U i and choose

g = -(-1)' ~ (-1)'-1 (~) gr.l

in the representationf = (f - g) + g. Then

K(tr,f; X, D(Ar» :« Ilf - g Ilx + t":i Arg Ilx

= II ~ (-1)'-1 C) gr,l t -1- r 'I A'rg Ilx

... f/r ..f/r

:« (rlt)" j dUl'" I I: [T(u) - 1]'fllx dU r
o " 0

+ ±C) (rllY II [T(ltlr) - II'f::x
I~l

:« wr(t,f; §') + l~ C) (riIY wr(t,f; §')

:« (21')' wr(t,f; §'),

which was to be proved.
As a consequence of (1.13) we obtain the following characterization of

K-intermediate spaces of X and D(Ar), namely

(X, D(Ar); ep(r» = {fE X: ep[w,{t,f; §')] < co}, (1.14)

where ep(r)[q:>{t)] = ep[<:p(tr)]. In the particular instance when the semigroup
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{T(t) : 0 ~ t < oo} is equi-bounded, i.e., II T(t)!1 ~ MfT for all t E (0, 00), and
@ = @o.q, this means that (8 > 0),

since, in this case,

The latter spaces are denoted in (4] by X8 ,r;q. They are nontrivial subspaces
of X containing D(A'') for 0 ~ 8 < r, I ~ q < 00 and 0 ~ 8 ~ r, q = 00,

since here @O,q[tr] < 00 (see (Lll». Furthermore, the following reduction
theorem of Lions-Peetre [15] is valid for 0 < k < 8 < r, 1 ~ q ~ 00

(compare also (4, p. 198]):

(1.15)

I being any natural number, I > 8 - k.
We conclude this section by mentioning that if .07 is the semigroup of

translations on the Lebesgue space Lp(- 00, (0), I < p ~ 00, the spaces
[Li - 00, oo)]o,r;q are known as generalized Lipschitz spaces,

[T(h) - I]'f(x) - L1 h1(x) = ±(~) (-I)r-Jf(x + jh)
j~O ]

being the rth difference of I E Lp(- 00, (0) and wr(t,f; .07), the familiar rth
modulus of continuity off

2. JACKSON AND BERNSTEIN-TYPE INEQUALITIES OF FIXED ORDER

In this section we consider approximation processes on a Banach space X
which are more general than those given by a (holomorphic) semigroup of
operators. They are defined by a family Olf = {U(t) : t E [0, I]} of operators of
C(X) satisfying for everyIE X:

U(t)/E J!!(X),

U(O) = I,

II U(t)fllx ~ M q( Ilfllx

U(tl) U(t2) = U(t2) U(t1)

lim II U(t)f - {fix = O.
1->0+

(t E [0, I]), (2.1)

(2.2)

(2.3)
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The essential properties are the commutativity in (2.2) and the convergence
property (2.3) which allows one to speak of a linear approximation process
on X. The uniform boundedness property and the strong measurability in
(2.1) are assumed for convenience in the subsequent evaluations. it
comparison with (1.12) shows that the strong semigroup property is replaced
by the weaker property of commutativity. In this way we cover a wide class of
linear approximation processes as the discussion in Section 4 will show.

In the following, we shall be concerned with the approximation behaviour
of U(t) in (2.3) in more detail. For this purpose, we shall study the Banach
spaces

X(<P; '1't) = {IE X: Ilfll<p;~7t = Ullx + <P[I U(t)f - fl:xJ < oo}.

Here we use [I U(t)f - f!lx as a functional of class uVc-(X) (which follows
from (2.1)) to construct normal Banach subspaces of X generated by '1'/ in the
same way as the K-functional was used above to construct the K-intermediate
spaces. In the particular case (j> = <Pg •q , we write X(<P; '1'/) = X2 •a/ 1t •

Thus, e.g.,

Xg.oo;eJlt = {IE X: Ii U(t)f - f!lx = O[Q(t)], t -+ o+}

represents the space of all elements f E X which are approximated by ut( 'with
order Q(t).

We now assume more specific properties concerning the behavior of U(t)f
for a normal Banach subspace Y of X, in the form of Jackson and Bernstein
type inequalities.

DEFINITION 8. Let X and Y be Banach spaces as in Section 1, YC X,
and let y(t) be a monotone increasing function in Jt+ satisfying
o < y(t) 0(; y(l) = I and

(t E (0,1]). (2.4)

We say that JlI satisfies a Jackson-type inequality of order yet) on X with
respect to Y provided

II U(t)f - fllx ~ Cyy(t) Ifly (fE Y) (2.5)

for some constant Cy > 0, and a Bernstein-type inequality of order yet) on X
with respect to Y provided

U(t)f E Jt( Y),

for some constant D y > 0.

(fEX) (2.6)
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A discussion concerning existence and applicability of Jackson and
Bernstein-type inequalities for concrete examples is given in [iO] and also
in the following Sections 3 and 4. These inequalities enable us to prove the
following approximation-theoretic assertions concerning 1JIt.

THEOREM 1. Let IJIt be a linear approximation process on X defined by
(2.1)--(2.3), let U(t)f E vU( Y) for every f E X, and let (/) be a regular function
seminorm in the sense of Definition 3.

(a) IfIJlt satisfies the Jackson-type inequality (2.5) oforder yet) on X with
respect to Y, and (/) is upper-bounded by a constant, i.e.,

(/)[<p(t)] ~ const. (/)[<pet)] (<p E Jt+),

then (/)[y(t) I U(t)f I1'] < 00 implies (/)[11 U(t)f - fllx] < 00.

(b) If IJIt satisfies the Bernstein-type inequality (2.6) of order yet) on X
with respect to Y, and (/) is upper-bounded by a constant and lower-bounded
by yet), i.e.,

(/)[y(t) <p(t)] ~ const. (/)[y(t) <pet)] (<p E Jt+),

then (/)[11 U(t)f - fllx] < 00 implies (/)[y(t) I U(t)fl1'] < 00.

(c) Under the assumptions ofpart (a) as well as ofpart (b), the assertions
(/)[ yet) I U(t)f I1'] < 00 and (/)[11 U(t)f - fllx] < 00 are equivalent, and
furthermore

with equivalent norms.

XC(/); '11) = (X, Y; (/)(y») (2.7)

Proof We first establish part (c). By a standard device, using (2.1) and
(2.5), we have, for arbitrary fE X, g E Y,

II U(t)f - fllx ~ II[U(t) - I](f - g)llx + II[U(t) - I]g Ilx
~ MY/t Ilf - g Ilx + C1'y(t) Ig [1',

and hence

II U(t)f - fllx ~ max(M'Pt, C 1') K(y(t),J; X, Y).

On the other hand, choosing, in view of U(t)f E Y, the particular
representationf = [f - U(t)f] + U(t)f, we obtain, by definition,

K(y(t),J; X, Y) ~ II U(t)f - fllx + yet) I U(t)f Iy •

Now, if we assume that (/)[[1 U(t)f - fllx] < 00 and (/)[ yet) I U(t)f I1'] < 00
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are equivalent, it follows immediately by properties (1.1) and (1.2)
of clJ and the above estimates that these assertions are also equivalent to
clJ[K(y(t),f; X, Y)] < 00. This proves part (c).

It remains to prove the equivalence expressed by parts (a) and (b). First,
we use the Jackson-type inequality (2.5) which yields, for every pair
u, v E (0, 1], by the commutativity (2.2),

Ii U(v)/ - U(u)/llx ~ 11[1 - U(u)] U(v)/Iix + [1[U(v) - I] U(u)Illx

~ Cy[y(u) i U(v)/iy + y(v) i U(u).fly]' (2.8)

The counterpart follows by the Bernstein-type inequality (2.6) and (2.2),
namely

I U(v)! - U(u).fly ~ I U(v)[1 - U(u»)/iy + [U(u)[U(v) -I]/Iy

~ D y[y-l(V) II U(u).f - /Ilx + y-l(U) II U(v)/ - /llx]. (2.9)

The rest of the proof now consists of utilizing these inequalities in a suitable
technical manner, where conditions (1.4)-(1.7) and (2.4) upon ep and yet) are
needed. To this end, we introduce the Bochner integral

.1

S(t)/ = (2It) J U(v)/ dv
tl2

(2.11)

for t E (0, 1], which is, by assumption, an element of Y and tends to f in
X-norm if t ->- O. Then the inequalities

00

I II S(tl-k
)/ - S(t2-k

-
1)/llx

k~O

00 , .. t2-7...·

= I~O II t-
1
2

k
-t-

1 J12-"-1 [U(!!)/ - U(vj2)f] dv t
YJ t,,-7:

~ L t-121<+1 r- II U(v)f - U(vj2)/:lx du
k~O • 12-k - 1

.• 1

~ 2 J0 !! U(v).f - U(vj2)/llx V-I dv,

and
.1

IS(t)fly ~ j i U(v)/lyv-1 dv
.. t/2

.1 r1
= j IU(v)/lyv-1 dv+ [I U(vI2)/ly-1U(v)/ly)v-1dv

• 1/2 • t

r1 "I~ \ U(v)/lyv-1 dv + :U(vf2)/- U(v)flyv-1 dv
.. 1/2 ... t

are valid.
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Then, applying (2.8) in (2.10), we obtain, by the properties of yet) forfE X,

II U(t)f - fllx
oc

::;;;; II U(t)f - S(t)flix + L II S(t2-k )f - S(t2-k
-
1)fllx

k~O

::;;;; 2 5:12 11 U(t)f - U(v)fllx V-I dv + 2 J: II U(v)f - U(v/2)fllx V-I dv

::;;;; 2Cy J:/
2

[yet) I U(v)fly + y(v) I U(t)f[y] V-I dv

+ 2Cyr[y(v) I U(v/2)fIY + y(v/2)] U(v)fly] V-I dv
o

::;;;; 2Cy (my Jot y(v) [ U(v)f I Y V-I dv + yet) 1 U(t)f I y)
t/2

.1

+ 2Cy(my + 1) J/(v) I U(v)f IY V-I dv

::;;;; 2Cy [(2m y + 1)ry(v) I U(v)flyv-1 dv + yet) I U(t)fIY].
o

Part (a) now follows by the properties (1.1), (1.2) and (1.5) of ct>.
To prove part (b), we apply (2.9) in (2.11) and obtain, by the properties of

yet) for f E X,

I U(t)fly ::;;;; I U(t)f - S(t)fly + IS(t)fly

::;;;; 2 I:/2 1 U(t)f - U(v)fly V-I dv + J:/2 I U(v)fly V-I dv

+ J> U(v/2)f - U(v)flyv-1dv

::;;;; 2D y I:/
2

[y-l(t) II U(v)f - fllx + y-l(V)IIU(t)f - fllx] V-I dv

01 II+ D y J1/211fllx y-l(V) V-I dv + D y 1 [y-1(V) II U(v/2)f - fllx

+ y-1(v(2) II U(v)f - fllx] v-1dv

::;;;; 2D y [I
1

y-l(V) II U(v)f - fllx V-I dv + myy-l(t) II U(t)f - fllx
t/2

+ D y Ilfllx y-1(1(2)

+ D y(1 + my) II y-l(V) II U(v)f - fllxv-1 dv.
1/2

Then the properties (1.1), (1.2) and (1.4) of ct> as well as the upper-boundedness
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by a constant, the lower boundedness (1.6) by yet) and the regularity of r:j)

yield the implication of part (b), since by the latter condition, <1>[ yet)] < OJ

(see Lemma 1(c».
We remark that part (b) contains an assertion of Zamansky's type (who

first proved assertions of this kind for sequences of trigonometric
polynomials) and that part (c) establishes what are called in approximation
theory, a "direct" and a "converse" theorem, since it allows to conclude
convergence properties of the linear approximation process fl given by
<1>[[[ U(r)f - fllx] < 00 from the structural properties of the spaces X and Y
given through <1>[K(Y(l),f; X, Y)] < 00, and conversely. In the next section
we shall enlarge these results by assertions of reduction type which give
convergence in stronger norms than that of X.

3. JACKSON AND BERNSTEIN-TYPE INEQUALITIES OF DIFFERENT ORDERS

The first problem of this section may be described as follows: Given a
normal Banach subspace Z of X, we ask for necessary and sufficient conditions
which assure that Olt satisfies Jackson and Bernstein-type inequalities on X
with respect to Z.

THEOREM 2. The approximation process (ill sati~fies a Jackson-type
inequality oforder z(t) E Jt+ on X with respect to a normal Banach subspace Z
of X, i.e.,

II U(t)f - fllx ~ Cz z(t) !flz

for some constant Cz > 0, if and only if

Proof By definition, (3.2) states that

(IE Z; t E (0, Ij),

(3.2)

<1>z,,,,[ii U(t)f - fllxl = sup r 1(t) Ii UCt)f - fll: ~ Cz Ifiz
IE(O 1]

for allfE Z. But this is equivalent to (3.1).
The characterization of Bernstein-type inequalities is more complicated,

We assume from here on-even if not explicitly mentioned-that z(t) is
monotone increasing with 1 = z(l) > z(t) > °for t E (0, 1], and that z(t)
satisfies condition (2.4) with a corresponding constant l11 z > O.

THEOREM 3. If the approximation process qtl satisfies a Bernstein-type
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inequality oforder z(t) on X with respect to a normal Banach subspace Z ofX,
i.e.,

for some constant D z > 0, then

U(t)f E ult(Z), I U(t)flz ~ D z Z-1(t) Ilfllx (f E X; t E (0, 1D
(3.3)

X.,I;'1't C Z. (3.4)

Proof Since U(t)f E ./I/(Z), it follows that S(t)f E Z for every f EX,
t E (0, 1]. We then proceed as in (2.10) and (2.9), replacing X and Y by Z,
respectively, to deduce

00 t

L IS(t2-k)f - S(t2-k - 1)flz ~ 2 r I U(v)f - U(vj2)f Izv-1 dv
k=O '0

.t

~ 2Dz J0 [z-I(vj2) II U(v)f - fllx + Z-1(V) II U(vj2)f - fllx] V-I dv

t

~ 2Dz(l + 111.) I
o

Z-1(V) II U(v)f - fllx V-I dv,

and in a similar manner

00 t

L II S(t2-k )f - S(t2-k -
1)fllx ~ 2 I II U(v)f - U(v/2)fllx V-I dv

k~O 0

~ 4 f II U(v)f - fllx V-I dv ~ 4 It Z-1(V) II U(v)f - fllxv-1 dv.
o 0

From these estimates we conclude that

00

L[S(t2-k - 1)f - S(t2-k )/]

o

converges in norm II' liz to an element of Z which has to bef - S(t)f, since
lim,,->oo II S(t2-k )f - fllx = 0. HencefE Z, and furthermore, for t = 1,

Ilfllz ~ II S(l)fllz + [2D z(l + m.) + 4] <p.,IDI U(t)f - fllx]

~ const. Ilfll•. l;'1'/

in view of the fact that

II S(l)fllz ~ 2 I:/211 U(v)fllx dv + 2 I:/
2

I U(v)flz dv

~ M'1'/ Ilfllx + D z z-I(l/2) Ilfflx.
This proves the theorem.
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A converse result is given by

325

THEOREM 4. Let JlI be an approximation process on X satisfying the Jackson
and Bernstein-type inequalities (2.4), (2.5) oforder yet) on X with respect ta Y.
Furthermore, let z(t) be given as in Theorem 3 and such that WZ ,l is a function
seminorm upper-bounded by a constant and lower-bounded by yet). Then the
inclusion relation (3.4) for a normal Banach subspace Z of X implies that 0'/
satisfies a Bernstein-type inequality (3.3) of order z(t) 0/1 X with respect to Z.

Proaf On account of (1.11) and (2.7), we have, by assumption,

Y (X Y· ffi(Y)') - X r Z< , , '*'Z.l - z.1;11 ~ ,

so that U(t)f E j{(Z) for every fEZ. Furthermore, (3.4) yields, for some
constant D~,

, [ .1 1I U(t)f[lz ~ Dz Ullx + j [I rUes) - I] U(t)fi: xr 1(s) S-' ds
• 0 j

The latter inequality holds since, by (2.1),

II[U(s) - I] U(t)fllx ~ Mcw(l + MOIJ

and by (2.5), (2.6),

II[U(s) - I] U(t)fl[x ~ Cyy(s) I U(t)fly

~ C yD y)'(sLv-1(t)ifi!x

(t ~ s < 1),

(0 < s < t).

Now WZ,l is upper-bounded by a constant and lower-bounded by y(t).
Replacing Q(t) and z(t) in conditions (1.9), (LlO) by z(t) and 1, respectively,
it follows that there is a constant D z > 0 such that

I U(t)flz ~ II U(t)f[lz ~ D z [Ifllx rI(t),

which was to be shown.
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As an immediate consequence of Theorems 2, 3, and 4 and relation (2.7),
we have

COROLLARY 1. Let X, Y and i¥/ be given as in Theorem 4. Furthermore,
let z(t) be monotone increasing with °< z(t) :;;;; z(1) = 1 and z(t) :;;;; m zz(t/2)
for t E (0, 1] and such that cfJz,l and cfJz,w are regular function seminorms, both
upper-bounded by a constant and lower-bounded by yet). Then IJI/ satisfies
Jackson and Bernstein-type inequalities of order z(t) on X with respect to a
normal Banach subspace Z ofX ifand only if

(X, Y; cfJ~~i) c z c (X, Y; cfJ~:~). (3.5)

This shows that if one has Jackson and Bernstein-type inequalities for IJI/
of order yet) on X with respect to Y, the problem of finding such inequalities
of "lower" order z(t) is reduced to that of finding certain intermediate
spaces Z of X and Y satisfying (3.5). The applications in Section 4 will show
that this is a practical procedure.

A few words about this corollary as an interpolation theorem. Rewrite
condition (2.1) and the Jackson and Bernstein-type inequalities (2.5), (2.6) in
the form

II Vet) - 111[x,x] :;;;; M"lt + 1,

II V(t) - lll[Y,x] :;;;; Cyy(t),

II V(t)ll[x,x] :;;;; M"I£ ;

II V(t)ll[x,Y] :;;;; Dyy-l(t),

using the notation II V II[x"x
2

] = SUP/EX, II Vfllx/llfllx
1

for any linear operator
Von a Banach space Xl into a Banach space X 2 • Now note that the first two
inequalities could be interpreted as Jackson and Bernstein-type inequalities
of order to on X with respect to X. The "if" part of Corollary 1 states that,
in case yet) = trY., (X > 0,

II V(t) - 111[z,x] :;;;; Cz t~, II V(t)ll[x,z] :;;;; Dz t-~

for intermediate values {3, 0 < (3 < ex, and corresponding intermediate
spaces Z satisfying (3.5), since cfJ~,l and cfJll,w are upper-bounded by 1 and
lower-bounded by yet) = trY.. Thus, one could interpret the conclusion of the
corollary as an interpolation of the above inequatilies for X and Y of order 1
and t n to Jackson and Bernstein-type inequalities of intermediate order t~,°< {3 < iX, on X with respect to the intermediate spaces Z satisfying (3.5).

We remark that in this form the "if" part of Corollary 1 could also be
established by a general interpolation theorem of Riesz-Thorin type for
linear operators on K-intermediate spaces (compare Peetre [17, p. 18]).

The next interesting question is under what conditions does IJI/ satisfy
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Jackson and Bernstein-type inequalities on Z with respect to Y, instead of on X
with respect to Y.

THEOREM 5. Let OIl be an approximation process on X defined by (2.1)-(2.3).

(a) IFJ71 satisfies a Jackson-type inequality oforder yet) on X with respect
to Y and a Bernstein-type inequality of order z(t) on X with respect to Z,
where eJ\,l is lower-bounded by yet), i.e.,

tJy(u) r I (u) u-1 du = O[y(t) r I (t)]
o

by (LlO), then YC Z and

I U(t)f - flz ~ C(Z, Y)y(t)r1(t) Ifly (IE Y),

(3.6)

(3.7)

i.e., v71 satisfies a Jackson-type inequality of (reduced) order y(t) r1(t) on Z
lllith respect to Y.

(b) If ''It satisfies a Bernstein-type inequality of order yet) on X with
respect to Y and a "Jackson-type" one of order z(t) on X with respect to Z,
where (Jjz,TJ is lower-bounded by yet), i.e.,

,II J.-l(U) z(u) u-1 du = O[y-l(t) z(t)]
• 1

by (1.8), then

I U(t)fly ~ D(Z, Y)(y-l(t) z(t) [flz + U:lx) (IE Z),

(3.8)

(3.9)

i.e., )7/ satisfies a "Bernstein-type" inequality of(reduced) order yet) r 1(t) on Z
with respect to Y.

Proof We carryon the estimates begun in Theorem 3 for fE Y, by the
Jackson-type inequality (2.5) which gives, by (3.6),

oc

L II S(t2-1.!) - S(t2-l.'-1)nz
k~O

J
't

~ [2D z(l +mz) +4] r1(v) I: U(v)f-fllxv-1dl'
o

.1

~ IflyC y[2D z(l + m z) + 4) J y(v) rl(L') v--1 du
o

~ C1(Z, Y)y(t)r1(t) Ifiy.
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In a similar manner, we obtain

I U(t)f - S(t)f Iz :s; 2DzCy Ifly J:
/2

[y(v) r I(vj2) + y(vj2) rI(v)] V-I dv

:s; C2(Z, Y)y(t)rI(t) Ifly

for fEY. Then, arguing as in Theorem 3, it follows that, for fEY,

OJ

U(t)f - S(t)f + L [S(t2- le)f - S(t2-IH)f] = U(t)f - f
Ie=O

is an element of Z. This implies Y C Z, and with

it follows that

I U(t)f-flz:S; C(Z, Y)y(t)z-I(t)lfly (fE Y).

To prove (3.9), we use the estimate of part (b) of Theorem I and then the
Jackson-type inequality (3.1) for fE Z to deduce

I U(t)fly :s; D y(3 + m.y) JI rI(v) II U(v)f - fllx V-I dv
t/2

+ D ymyr 1(t) II U(t)f - fllx + D y Ilflix y-I(1/2)

:s; D yCz(3 + my) Iflz lJI rI(v) z(v) V-I dv + rI(t) z(t)/
\ In I

Applying (3.8), this yields the assertion (3.9).
We now come to our main theorem which extends Theorem 1 and includes

the already mentioned assertion of reduction type.

THEOREM 6. Let Y, Z be normal Banach subspaces of the Banach space X,
let 011 and U(t)fbe as in Theorem 1, and let f1J be a regular function seminorm.

(a) Ifo/t satisfies a Jackson-type inequality oforder y(t) on X with respect
to Y and f1J is upper-bounded by a constant, then

f1J[y(t) I U(t)fly] < 00 => f1J[[1 U(t)f - fllx] < 00.

If, in addition, o/t satisfies a Bernstein-type inequality of order z(t) on X with
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respect to Z such that 1\,1 is lower-bounded by yet), and I/J is upper-bounded
by z(t), then

I/J[y(t) I U(t)fly] < 00 => fE Z, CP[z(t) ! U(t)f - flzJ < 00. (3.10)

(b) If 11 satisfies a Bernstein-type inequality of order yet) on X with
respect to Y and cP is lower-bounded by yet) and upper-bounded by a constant,
then

<P[il U(t)f - fllx] < 00 => CP[y(t) I U(t)fly] < 00.

If, in addition, iJ/1 satisfies a Jackson-type inequality of order z(t) on X with
respect to Z such that CPz,ro is lower-bounded by yet), then

fEZ,CP[Z(t) I U(t)f-flz] < 00 =>CP[y(t)i u(t)fly] < 00. (3.11)

(c) If iJ/1 satisfies Jackson and Bernstein-type inequalities of orders y(t),
z(t) on X with respect to Y, Z (i.e., 0lI satisfies inequalities (2.5), (2.6), (3.1)
and (3.3», where CP.,1 and <Pz,ro are lower-bounded by yet), then for every regular
function seminorm which is lower-bounded by yet) and upper-bounded by z(1),
the above three assertions are equivalent to each other as well as to

CP[K(y(t),f; X, Y)] < 00 for fEX.

Proof The first half of (a) and of (b) have already been proved in
Theorem L To prove the second half of (a), we proceed as in the corre
sponding part of Theorem 1, using an analogue of (2.8) where X is replaced
by Z and (2.5) by the inequality (3,7), in accordance with Theorem 5. We have

00

IU(t)f - S(t)flz + I I S(12-")f - S(12-"'-I)flz
k~O

~ (t
~ 2 Jtf2 I U(t)f - U(v)flz V-I dv + 2 . 0 i U(v)f - U(vj2)flz V-I dv

~ 2C(Z; Y) It [yet) Z-1(t): U(v)fly -+- y(v) Z-I(V) I U(t)fly] V-I dv
tf2

.t

+ 2C(Z, Y) J [y(v) Z-1(V) I U(vj2)f Iy
o

+ y(vj2)r1(vj2) I U(v)f IyJ V-I dv

~ 2C(Z, Y) [m.y(t) Z-1(t) I U(t)f Iy

+ (2my + m.) (y(V) Z-1 (v) 1 U(v)f Iy V-I dvJ.
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Furthermore, we obtain directly from part (a) of Theorem 1, using 1 :'S; Z-1(t)
for t E (0, 1],

ro

II U(t)f - S(t)flix + I II S(t2-k)f - S(t2-k
- 1)fllx

10=0

:'S; 2ey [(2m y + 1) f y(v) Z-I(V) ! U(v)flyv-1dv + y(t)Z-I(t) I U(t)fIY].
o

Using both estimates, it follows from tP[y(t) I U(t)fly] < 00 by the upper
boundedness of tP by z(t) that

tP [z (t) II U(t)f - S(t)fllz + z(t) f II S(t2-k)f - S(t2-k- 1)fllz] < 00.
k=O

By the regularity (1.3) of tP this implies that

ro

I II S(t2-k )f - S(t2-k
-
1)fllz < 00,

o
and hence

ro

I [S(t2-k )f - S(t2-k - 1)f] = (S(t)f -f) E Z
o

for almost all t E (0,1]. But then fE Z, and assertion (3.10) follows since,
forfE Z,

ro

I U(t)f - flz:'S; II U(t)f - S(t)fllz + I II S(t2-k)f - S(t2-k
-
1)fllz.

k~O

To prove (3.11) we proceed as in part (b) of Theorem 1, using an analogue
of (2.9), where X is replaced by Z and (2.6) by the inequality (3.9) according
to Theorem 5:

! U(t)fly:'S; 2D(Z, Y) I:/2 [y-l(t) z(t) I U(v)f - flz

+ y-l(V) z(v) I U(t)f - flz] V-I dv

+ 2D(Z, Y) ft [II U(v)f - fllx + II U(t)f - fllx] V-I dv
tl2

I
I 1

+ D y Ilfllxy-l(v) V-I dv + D(Z, Y) I [y-l(V)Z(V) I U(vj2)f -flz
1/2 t

+ y-l(vj2) z(vJ2) I U(v)f - flz] V-I dv

+ D(Z, Y) I: [II U(vj2)f - fllx + II U(v)f - fllx ]v-1 dv.
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Using the various properties of yet), z(t) and (2.1), we can estimate further,
as in Theorem 1, part (b):

[

.1

I U(t)f!y < 2D(Z, Y) mz J r 1(r)z(v): U(v)f-.fzv-1 dv
t/2

+ Inyy-l(t) z(t) I U(i)f - f Iz]
+ Ilflix[D yr 1(l/2) + 4(M'i'1 + 1) D(Z, Y)]

._1

+ D(Z, Y)(mz + my»)1 yl(V) z(v) : UCv) f - f, Z V,-l dl'
t,.'2

.1

+ lD(Z, Y)' II U(r)f - fllx V-I dr.
.. t/2

Since

ep [yet) (/2 [! U(l')f -fllx V-I dV] < lnyB(<l>, y) ep[y(til):1 UUf2)f -- f!lxl

<lnyB(C/J, y)(M%, + 1) @[y(t)],

we can now conclude, just as in Theorem 1, that ep[ y(t) I UCt)f Iy] < 00

provided ep[z(t) I U(t)f - f Iz] < CfJ and ep[ yet») < 00, the latter relation
being satisfied by assumption and Lemma ICc).

Finally, part (e) is an immediate consequence of the preceding if one
observes that ep is upper-bounded by a constant if it by z(t) (see Lemma lea»).

Let us concretize this theorem in the representative case ep = @g,q •

COROLLARY 2. Let OIt be a linear approximation process satisfying Jackson
and Bernstein-type inequalities of orders yet), z(t) on X with respect to Y, Z,
and let z(t), y(t) satisfy (3.6) and (3.8). If the fimction seminorm epQ.oo satisfies
(1.7) and (1.8), then the following assertions are equivalent for t -- 0+ :

(a) II U(t)f - fllx = O[Q(t)],

(b) I U(t)fly = o[y-l(t) Q(t)],

(c) fE Z, I U(t)! - flz = O[Z-I(t) Q(t)],

(d) K(y(t),j; X, Y) = O[Q(t)].

If, in addition, conditions (1.9) and (1.10) hold, then

(aY

(bY

1f
o

[Q-1(t) Ii uCt)f - fllx]q t-1 dt < 00,

f: [Q-l(t)y(t) I U(t)fly]q t-1 dt < 00,
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(c)' fE Z,

(d)'
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s: [£l-I(t) Z(t) I U(t)f - f Iz]q t-I dt < 00,

J: [£l-I(t) K(y(t),f; X, y)]q t-I dt < w

are equivalent for 1 ~ q < 00.

Let us remark that for the particular choice £l(t) = t8, yet) = t 1 and
z(t) = t k , the assumptions of this corollary are equivalent to 0 ~ k < () < I.

Let us also consider a discrete version of this corollary. By this we mean
that O/i is defined by a sequence r = {Vn}~ of operators Vn of 6'(X) which
satisfy the basic conditions (2.1)-(2.3). Setting U(t)f = Vil/il/' this amounts
to the conditions

II Vnfllx ~ M~ Ilffix (n EN),

VnV", = VrnVn (m, n EN),

lim II Vnf - fllx = 0
'n--)oco

(2.1)'

(2.2)'

(2.3)'

for everyf E X, where N denotes the set of all positive integers. The Jackson
and Bernstein-type inequalities of orders yet), z(t) on X with respect to Y
and Z take then the particular form

II Vnf - fllx ~ C yy(1jn) Ifly

VnfE Y, I Vnfly ~ D~y-I(1jn) Ilfllx

II Vnf - fllx ~ Czz(ljn) If Ix

VnfE Z, I Vnflz ~ D~z-I(1jn) Ilfllx

(IE Y),

(lEX),

(IE Z),

(lEX)

(2.5)'

(2.6)'

(3.1)'

(3.3)'

for all n EN. Note that here the assumptions V(t)f Evlt(y), V(t)f EJt(Z)
reduce to VnfE Yand VnfE Z, respectively, for all n E N.

Now we can state the discrete version of the above corollary (the case
q = 00, for simplicity).

COROLLARY 3. Let {Vn}~ be a sequence of operators of 6"(X) satisfying
(2.1)'-(2.6)' and (3.1)', (3.3)'. Let £l(t) , yet), z(t) satisfy, furthermore, the
conditions (3.6), (3.8), (1.7), and (1.8). Then the following assertions are
equivalent, for n ---+ 00:

(a) II Vnf - fllx = o[£l(1jn)],

(b) I Vnf Iy = O[y-I(1jn) £l(1jn)],

(c) fE Z, I Vnf - flz = O[z-I(1jn) £l(ljn)],

(d) K(y(ljn),f; X, Y) = o [£l(ljn)].
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This result extends our previous ones in [9] and contains those announced
in [10] for the particular instance yet) = t l , z(t) = (k and Q(t) = teo

4. ApPLICAnONS

4.1. Holomorphic Semigroup Operators

Let us apply the results of the preceding section to approximation
processes generated by a one-parameter family :r = {T(t) : 0 ;:;;; t < OJ}
of equibounded semigroup operators in 6"(X) of class (Co), with
My = SUPt II T(t)l! < 00. Then conditions (2.1)-(2.3) are satisfied for the
family ff,. = {T,.(t) = I - [I - T(t)),. : 0 ;:;;; t ;:;;; I}, r e i\J, for which
TI(t) = T(t). The problem now is to find subspaces of X for which T"
satisfies Jackson and Bernstein-type inequalities. As the following will show
this can easily be achieved by considering the domain D« - A)'i) of the
fractional power (-A)'Y, 0 < Y < r, of the infinitesimal generator-A.

DEFINITION 9. An elementfe X belongs to D« -An, 0 < y < r, if and
only if

exists, where

C'Y,r = Jco t-"(1 - e-ty t-1 dt.
o

Concerning this definition and other equivalent ones, connected with the
names of Phillips and Balakrishnan, see Westphal [21]. In case y is a positive
integer, it coincides with the usual one by a result of Lions-Peetre [15].
Furthermore, it follows for fe D« -A)'Y) (see [21)) that

[1 - T(t)],! = t''1T(y)-I ( Py.r(u) T(tu) (-A)Yfdu (0 < y ~ r, t > 0),

(4.1)

where P"l,,.(u) is a function of LI(O, (0) defined by its Laplace transform

LEMMA 6. Let {T(t) : 0 ~ t < oo} be the above-mentioned semigroup of
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operators. Then for each y, fJ with °< y < f3 the inclusions (recall Section 1
for notation)

(X, D((-At); <p~i) C D((-An C (X, D((-At); <P~~) (4.2)

are valid with respect to the norm Ilfllx + lie-A)v fllx definedforfE D((-A)v).
Furthermore, if the semigroup is also holomorphic, the approximation process g-;.
satisfies Jackson and Bernstein-type inequalities of order tV, °< Y ~ r, on X
with respect to D((-A)v), i.e.,

II TrCt)f - fllx~ [r-1(y) M~ .c IP",r(u)1 dU] t" II( -A)"fllx (fE D((-A)"»,

IIC-A)v TI'(t)fllx ~ Dr,vt-" Ilfllx (fE X).

Proof From Definition 9 we conclude by (1.14):

II(-A)'illx ~ C;,lr rt-VII [I - T(t)]'fllx C 1 dt
o

~ c-:;YM~ + lrllfllx + C';-:;<Pv ,l[Wr(t,f;.9)] < 00

for fE (X, D(Ar); <P~~D, r > y; and from relation (4.1):

<PV,oo[W,.(t, f; 5')] ~ [r-1(y) M~r Ip"".(u)[ dU] lie-A)"fllx (4.3)
o

for fE D(( -A)"), so that, again by (1.14), relation (4.2) is established for
integral fJ = r. But (4.2) also follows for nonintegral fJ since (see Berens
[2, p. 46]),

(l ~ q ~ 00; °< y < f3 < r).

(4.4)

In order to show the existence of Bernstein-type inequalities we consider first
the case y = r of highest order.5 Then by the holomorphic property of T(t),
the range R[T(t)] is contained in D(Ar), and T(t)fas well as Tr(t)fare strongly
continuous (and hence measurable) for eachfE X with respect to the Banach
norm Ilfllx + II A'l'llx for D(Ar). Furthermore, the Cauchy integral formula
(see [4, p. 17, 292]) yields, for some ex > 0, NI' > 0,

5 This is in fact the highest possible order since II T.(t)f - fllx = oW), t -+ 0 +. implies
ATf = 0 or T,(t)f - f = 0 for all t > O. Concerning this "saturation" theorem see [4,
p. 102].
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so that a Bernstein-type inequality of order rr on X with respect to DCA') is
satisfied. The Bernstein-type inequality of order to', 0 < Y < r, is now an
immediate consequence of Corollary 1 since its assumptions are fulfilled in
view of (4.2) and 0 < y < r. The corresponding Jackson-type inequality
follows directly from (4.3).

Choosing Y = D(A'), yet) = t" and Z = D« ~A)Y), z(t) = r",O < y < r,
the hypotheses of Corollary 2 are satisfied for the family Y" . Its application
therefore yields

THEOREM 7. Let.r.,. be the approximation process

{T,,(t) = I - [I - T(t)]" : 0 ~ t ~ I},

where {T(t) : 0 ~ t < oo} is an equi-boundedfamily ofholomorphic semigroup
operators of class (Co). Furthermore, let Q(t) be a nondecreasing function 0/1

(0, 1] satisfying for 0 < y < r, t ---->- 0+,

j
d

Q(u) u-y
- 1 du = O[t-YQ(t)],

o

.1j t Q(u) u-r- 1 du = o[t-rQ(t)],

1It Q-1(U) uy
- 1 du = o[tY.Q-1(t)],

tf Q-1(U) U"-l du = O[t"Q-l(t)].
• 0

(4,5)

(4.6)

IffE X, the following assertions are equivalent for each q, 1 ~ q ~ 00:

.1

(a) J0 [Q-1(t) II T,,(t)f -flix]q t-1 dt < X,

.1

(b) fE D« -A)''), J0 [Q-1(t) t" 1[(-A)"TrCt)f - (-A)'fix]q t-1 dt <'XJ,

(c)

(d)

.1

J0 [Q-1(t) tT II A"T,,(t)nxF t-1 dt < CXJ,

.1

J0 [Q-1(t) K(t',f; X, D(ATW t-1 dt < 'XJ.

Let us remark that the equivalence (a) -¢> (d) has already been shown in
[17, 18] for functions Q(t) which are essentially submultiplicative. However,
our theory is not limited to this case (compare footnote 3). In case Q(t) = t a,

o < e < r, yan integer, (a) is equivalent to (b) also by the reduction theorem
ofre1ation (1.15) since (-A)'Y commutes with T,,(t), i.e.,

(-A)Y TrCt)f - (-A)Y f = -[I - T(t)]'( -A)Yf (fED«-A)Y). (4.7)



336 BUTZER AND SCHERER

Assertion (c) should be compared with the following equivalent statement:

(c)' ( [tr - e II ArT(t)fllx]q t-1 dt < 00,

which is of Zamansky's type (see [4, p. 210] and the references given there).

4.2. Resolvent Operators

As a second example of a linear approximation process, we consider the
family of resolvent operators {AR(A; A), A > O} of the infinitesimal generator
A of an equi-bounded family of semigroup operators {T(t) : 0 :(; t < oo} of
class (Co), namely,

AR(A; A)f = A ( rAtT(t)f dt (A> O;fE X).

Setting R(t) = AR(A; A) with t = A-I, this family of operators satisfies the
conditions (2.1)-(2.3) for t E (0, 1] or A E [1, (0) since AR(A; A)f is strongly
continuous and uniformly bounded for A ? 1, commutative in view of the
resolvent equation

and convergent to f for every f E X since ([4, p. 131D,

lim II AR(A; A)f - fllx = o.A...,,,,

In order to establish Jackson and Bernstein-type inequalities, we make use
of the defining relations for the resolvent R(A; A), namely,

(i)

(ii)

(M - A) R(A; A)f = f

R(A; A)(M - A)f = f

(fE X),

(fE D(A)).
(4.8)

(fE D(A)),

By (ii) it follows that, for A ~ 1,

II AR(A; A)f - fllx = II R(A; A) Afllx < A-1M i1il 11 Afllx

and by (i), AR(A; A)fE ./1t(D(A)), and

II A(AR(A; A)f)llx = ,\ [I AR(A; A)f - fllx < A(Mi1il + 1) Ilfllx (fE X),

where M i1il = SUP,\~l II AR(A; A)II < 00.

Hence the process g; = {R(t) : R(t) = AR(A; A), A = t-1, 0 < t < I}
satisfies Jackson and Bernstein-type inequalities of order t on X with respect
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to D(A). Since II AR(A; A)f - fll = 0(,\-1), A--* 00, for fE X implies Af = (I

or AR(A; A)f - f = 0 (see [4, p. 153]), this order is the best possible or
"saturation" order of the approximation process [?l on X. An application of
the "sufficiency" part of Corollary 1 to the family .?Jt gives Jackson and
Bernstein-type inequalities of intermediate order tV, 0 < Y < 1, on X with
respect to D« - A)v), since its assumptions are satisfied in view of (4.2) and
O<y<l.

We can now state

THEOREM 8. Let f?ll be the above approximation process. Furthermore, let
w(A) be a positive 110nincreasing function on [1, 00) satisfying for 0 < Y < 1,
A--* 00,

r w(u) uv - 1 du = O[AVw(A)],

f"w(u) du = O[AW(A)],
. 1

.,\

J w-1(u) u-1
--y du = O[A-YW-1(A)], (4.9)

1

Iff EX, the following assertions are equivalent for 1 <; q <; GO:

(a) f'" [W-1(A) II AR(A; A)f - filx]q A-I dA < OJ,
• 1

(b) fE D« -A)v),

f'" [W-1(A) A-V [I( -A)YAR(.:\; A)f - (-A)'J[ix]q A-I dA < co,
• 1

(c) j"'" [w-1(A) II AR(A; A)flix]q .:\-1 dA < CfJ,

"' 1

(d) r[W-1(t-1) K(t,f; X, D(A)]iI t-1dt < 00,
• 0

(e) r[W-1(t-1)Wl(t,f, y)]q t-1 dt < 00.
• 0

Proof. The equivalence of the first four assertions follows just as
Theorem 7 by applying Corollary 2 to f?ll = {R(t) = .:\R(A; A) : 0 < t cs:: 1,
.:\ E [1, <Xl)}, Y = D(A), yet) = t and Z = D« -A)Y), z(/) = (Y, 0 < Y < 1.
We have to observe that in view of the transformation A = 1-1 the
assumptions (4.9), (4.10) coincide with (4.5), (4.6) for the nondecreasing
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function Q(t) = wOlt), and that this corollary yields, e.g., instead of (a),
an assertion of type

(aY J: [W-1(t-1) II R(t)f - fll x]q t-1dt < 00,

which, however, is equivalent to (a).
The equivalence (d) -¢> (e) is established by relation (1.14).
Let us remark that in case w(A) = A-8 the equivalence (a) -¢> (e) has already

been shown in Butzer-Pawelke (6] for q = 00, and by Berens [2] for
1 ~ q < 00. The equivalence with (b) could also have been established by
the above-mentioned reduction theorem of relation (1.15) since AR(A.; A)
commutes with (-A)'>' just as T,.(t) does (compare (4.7)). Note further that
for this particular approximation process 9t the equivalence (a) -¢> (c) is
given in a trivial manner by the relation (4.8,i).

As examples of approximation processes generated by sequences of
operators considered in Corollary 3, let us mention summation processes of
Fourier series of 2'lT-periodic functions f belonging to C21T or to one of the
Lebesgue spaces Lf1T , 1 ~ p ~ 00. These are of the form

n

Vn(f; x) = I A.k,nr"(k) ei"ill,
k=-"n

where JACk) = 0/(2'17)) f~j(u) e- iku du is the kth Fourier coefficient of f
(k = 0, + 1, +2,...), the summation factors Ak,n satisfying certain conditions.
Various examples of such summation processes have been discussed from this
standpoint in Butzer-Scherer (7, 10].

4.3. Riesz-Means of the Fourier Inversion-Integral

We conclude by considering an approximation process which belongs to
none of the above categories of examples, namely, the Riesz-Means of the
Fourier inversion-integral of functions fE LP( - 00, (0), 1 ~ p ~ 2. It is
defined by

[R1' ,8;p(f)](x) = (pjv2'lT) r' j(x - u) X1',8(PU) du (p > 0, P ---* (0), (4.11)
• -00

the kernel X1',8 being defined though

A ( ) _ 10 - I V 11')8, I V I ~ 1 (0 °fi d)
X",a v - 10, I v [ ;): 1 y, > xe,

jA(V) = 0/V2'lT) f~oo e-iv'f(x) dx denoting the Fourier transform of an
e1ementfE LP( - 00, (0). Setting p = t-\ the family

&1',8 = {R1',8(t)f = R1',8jj) : t E (0,1], p E [1, oo)}
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is a linear approximation process on LP(- co, (0), satisfying (2.1)-(2.3) as
well as Jackson and Bernstein-type inequalities of orders p-'Y or to' on
LP( - 00, co) with respect to the space

[Ury
} = {fEU(-OO, co): 3gEU(-CO, 'Xl) with I v l'Yf~(v) = g~(v)}.

This order is the highest possible (saturation order) of the family glt,.,5 .

Furthermore, it can be shown that [LP]("'} = D« -A)'Y), where A: denotes the
infinitesimal generator of the holomorphic contraction semigroup given by
the singular integral of Cauchy-Poisson; thus

D(A) = {fEU(-CO, (0): 3g = AfEU(-CO, co) with I v !f~(v) = g~(l')}.

For all these facts we refer to Berens [2, pp. 82-83], Butzer-Nessel [5].
Now let A' be the infinitesimal generator of the ordinary translation group

on P(- 00, (0), i.e., A'f = l' and

D(A') = {fE U( - 00, (0) :1' = g E P(- 00, (0), h1~(v) = g~(v)}.

Denoting D« -A')"') by [U]('Y), (-A')'" f by fl'Y), and (-A)'"f by f('Y} (the
symbol for the fractional Riesz-derivative; for details see [5]), we have the
following result concerning "intermediate" Jackson and Bernstein-type
inequalities for fYl"',5 :

LEMMA 7. The approximation process fYlY,5' y,o > 0, satisfies the
follO'tl'ing inequalities on P(- 00, (0), 1 ~ p ~ 2, 0 < n: < y:

I: Ry ,5:p(f) - flip ~ ('(y, 0, IX, p) p-rY.lli~} IlL" (fE [P](.,}),

Ii R~~L(f)IIL" ~ D(y, S, ex,p) p~ !Iflb (fE P( -00, (0»,

Ii Ry ,8;p(f) - fllLP ~ C'(y, S, ex, p) p-rY.II/~) b (fE [U](rY.»,

il R~~L(f)liL" ~ D'(y, S, ex,p) p~ II filL" (fE U(-'Xl, (0»,

(4,12)

(4.13)

(4.14)

(4.15)

where C, 15, C', D' are positive constants depending only upon the parameters
indicated.

Proof The first two relations are an immediate consequence of (4.2) and
Corollary 1 which interpolates the Jackson and Bernstein-type inequalities
of order to: for fYlY•5 to those of order t~, 0 < IX < y, with respect to the
intermediate space [LP]{O:}. In view of the fact that (A')2 = A2, we can derive
from Lemma 6, for 0 < ex < y,

(X, D« -AY); ep;~~) C D« -A')"') C (X, D« -An; ep;~~),



340 BUTZER AND SCHERER

using (4.2) for y = (X and f3 = 21' > (x, I' EN, and then (4.4). The application
of Corollary I yields the inequalities (4.14), (4.15).

We are now able to state

THEOREM 9. Let fJfY • 8 be the linear approximation process given by (4.11).
Let w(p) be a positive nonincreasing function on [l, (0) satisfying, for p ---+ 00,

r w(u) U"'I-
1 du = O[p"'IW (p)],

P

J: Well) U"'2-
1 dll = O[p"'2W(P)], rw-l(u) U-"'2-1 du = o[p-"'2W - I (p)].

p

If fE LP( - 00, (0), I ~ P ~ 2, the following assertions are equivalent for
I ~ q ~ 00, 0 < (Xl < (X2 ~ P and any positive integer I' > (X2 - (Xl :

(a)

(b) fE [P]{O:I\ r" [w-l(p) p-"'111 R~~~/f)- jh} IIp]q p-l dp < 00,
I

(c)

(d)

Proof The equivalence of the first four assertions follows by Corollary 2
applied to Y = D((-A)"'2) and Z = D((-A)"'I) in the previously mentioned
fashion, observing the transformation p = t-1, since Lemma 7 yields all the
hypotheses necessary for this application. We can also replace the Riesz
derivative P"'} in (b), (c), and (d) by j<"'), depending upon which of the
inequalities are used in Lemma 7. Now, since ~:~:p(f) = Ry •8;ijC"'I» for
f E [LP]("'I) (this commutativity allows a new proofofthe equivalence (a) ¢> (b)
by reduction theorems, compare (4.7», Theorem I applied to j<"'I) for the
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case Y = D(Ar), @ = @Q,q , where .Q(t) = w(t-l) tt~l (compare footnote 3)
yields the further equivalent assertion

Cd)' f (QIl E £1'( - 00, 00),

J: [W-l(t-l) tQIK(r',!; £'f', [L"]('lW t-1dt < 00

for any r > <X2 - (Xl' But this is equivalent to (e) by relation (1.14).
Particular cases of this theorem are to be found in Berens [2], Butzer

Nessel [5], and in the references cited in the latter.
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